Distortion theorems for polynomials on a~circle
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1797-1807
Voir la notice de l'article provenant de la source Math-Net.Ru
Inequalities for the derivatives with respect to $\varphi=\arg z$ the functions $\operatorname{Re}P(z)$, $|P(z)|^2$ and $\arg P(z)$ are established for an algebraic polynomial $P(z)$ at points on the circle $|z|=1$. These estimates depend, in particular, on the constant term and the leading coefficient of the polynomial $P(z)$ and improve the classical Bernstein and Turan inequalities. The method of proof is based on the techniques of generalized reduced moduli.
@article{SM_2000_191_12_a2,
author = {V. N. Dubinin},
title = {Distortion theorems for polynomials on a~circle},
journal = {Sbornik. Mathematics},
pages = {1797--1807},
publisher = {mathdoc},
volume = {191},
number = {12},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/}
}
V. N. Dubinin. Distortion theorems for polynomials on a~circle. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1797-1807. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/