Distortion theorems for polynomials on a~circle
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1797-1807

Voir la notice de l'article provenant de la source Math-Net.Ru

Inequalities for the derivatives with respect to $\varphi=\arg z$ the functions $\operatorname{Re}P(z)$, $|P(z)|^2$ and $\arg P(z)$ are established for an algebraic polynomial $P(z)$ at points on the circle $|z|=1$. These estimates depend, in particular, on the constant term and the leading coefficient of the polynomial $P(z)$ and improve the classical Bernstein and Turan inequalities. The method of proof is based on the techniques of generalized reduced moduli.
@article{SM_2000_191_12_a2,
     author = {V. N. Dubinin},
     title = {Distortion theorems for polynomials on a~circle},
     journal = {Sbornik. Mathematics},
     pages = {1797--1807},
     publisher = {mathdoc},
     volume = {191},
     number = {12},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Distortion theorems for polynomials on a~circle
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1797
EP  - 1807
VL  - 191
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/
LA  - en
ID  - SM_2000_191_12_a2
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Distortion theorems for polynomials on a~circle
%J Sbornik. Mathematics
%D 2000
%P 1797-1807
%V 191
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/
%G en
%F SM_2000_191_12_a2
V. N. Dubinin. Distortion theorems for polynomials on a~circle. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1797-1807. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/