Distortion theorems for polynomials on a circle
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1797-1807 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Inequalities for the derivatives with respect to $\varphi=\arg z$ the functions $\operatorname{Re}P(z)$, $|P(z)|^2$ and $\arg P(z)$ are established for an algebraic polynomial $P(z)$ at points on the circle $|z|=1$. These estimates depend, in particular, on the constant term and the leading coefficient of the polynomial $P(z)$ and improve the classical Bernstein and Turan inequalities. The method of proof is based on the techniques of generalized reduced moduli.
@article{SM_2000_191_12_a2,
     author = {V. N. Dubinin},
     title = {Distortion theorems for polynomials on a~circle},
     journal = {Sbornik. Mathematics},
     pages = {1797--1807},
     year = {2000},
     volume = {191},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Distortion theorems for polynomials on a circle
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1797
EP  - 1807
VL  - 191
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/
LA  - en
ID  - SM_2000_191_12_a2
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Distortion theorems for polynomials on a circle
%J Sbornik. Mathematics
%D 2000
%P 1797-1807
%V 191
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/
%G en
%F SM_2000_191_12_a2
V. N. Dubinin. Distortion theorems for polynomials on a circle. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1797-1807. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a2/

[1] Bernshtein S. N., Sobranie sochinenii, T. 1, Izd-vo AN SSSR, M., 1952

[2] Borwein P., Erdelyi T., Polynomials and polynomial inequalities, Springer-Verlag, New York, 1995 | MR

[3] Turan P., “Über die Ableitung von Polynomen”, Compositio Math., 7 (1939), 89–95 | MR | Zbl

[4] Aziz A., Ahemad N., “Integral mean estimates for polynomials whose zeros are within a circle”, Glas. Mat. Ser. III, 31(51) (1996), 229–237 | MR | Zbl

[5] Aziz A., Shah W. M., “Inequalities for the polar derivative of a polynomial”, Indian J. Pure Appl. Math., 29:2 (1998), 163–173 | MR | Zbl

[6] Aziz A., Rather N. A., “$L^p$ inequalities for polynomials”, Glas. Mat. Ser. III, 32 (52) (1997), 39–43 | MR | Zbl

[7] Aziz A., Rather N. A., “A refinement of a theorem of Paul Turan concerning polynomials”, Math. Inequal. Appl., 1:2 (1998), 231–238 | MR | Zbl

[8] Jain V. K., “Generalization of certain well known inequalities for polynomials”, Glas. Mat. Ser. III, 32 (52) (1997), 45–51 | MR | Zbl

[9] Dubinin V. N., “Privedennye moduli otkrytykh mnozhestv v teorii analiticheskikh funktsii”, Dokl. RAN, 363:6 (1998), 731–734 | MR | Zbl

[10] Dubinin V. N., “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Zapiski nauch. sem. POMI, 237, POMI, SPb., 1997, 56–73 | Zbl

[11] Dubinin V. N., Kovalev L. V., “Privedennyi modul kompleksnoi sfery”, Zapiski nauch. sem. POMI, 254, POMI, SPb., 1998, 76–94 | MR

[12] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950