Almost periodic measure-valued functions
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1773-1796
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Weakly almost periodic measure-valued functions $\mathbb R\ni t\to\mu[\,\cdot\,;t]$ taking values in the space $\mathscr M(U)$ of Borel measures of variable sign in a complete separable metric space $U$ are considered. A norm ${\|\cdot\|}_w$ introduced in the space $\mathscr M(U)$ defines a metric on the set of probability Borel measures that is equivalent to the Levy–Prokhorov metric. A connection between the almost periodicity of a measure-valued function $t\to\mu[\,\cdot\,;t]\in (\mathscr M(U),{\|\cdot\|}_w)$ and its weak almost periodicity (both in the sense of Bohr and in the sense of Stepanov) is established.
@article{SM_2000_191_12_a1,
     author = {L. I. Danilov},
     title = {Almost periodic measure-valued functions},
     journal = {Sbornik. Mathematics},
     pages = {1773--1796},
     year = {2000},
     volume = {191},
     number = {12},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Almost periodic measure-valued functions
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1773
EP  - 1796
VL  - 191
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/
LA  - en
ID  - SM_2000_191_12_a1
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Almost periodic measure-valued functions
%J Sbornik. Mathematics
%D 2000
%P 1773-1796
%V 191
%N 12
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/
%G en
%F SM_2000_191_12_a1
L. I. Danilov. Almost periodic measure-valued functions. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1773-1796. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/

[1] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR

[2] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985 | MR

[3] Chentsov A. G., Prilozhenie teorii mery k zadacham upravleniya, Sverdlovsk, 1985

[4] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR

[5] Ivanov A. G., “Optimalnoe upravlenie pochti periodicheskimi dvizheniyami”, PMM, 56:5 (1992), 133–142 | MR

[6] Ivanov A. G., “Ob optimalnom upravlenii pochti periodicheskimi dvizheniyami pri nalichii ogranichenii na srednie tipa ravenstv i neravenstv. I; II; III”, Differents. uravneniya, 33:2 (1997), 167–176 ; 3, 316–323 ; 4, 478–485 | Zbl | Zbl | Zbl

[7] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii i pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Matem. sb., 188:10 (1997), 3–24 | MR | Zbl

[8] Pinni E., Obyknovennye differentsialno-raznostnye uravneniya, IL, M., 1961

[9] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR | Zbl

[10] Butkovskii A. G., Metody upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1975 | Zbl

[11] Levitan B. M., Pochti-periodicheskie funktsii, GITTL, M., 1953

[12] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[13] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[14] Danilov L. I., “Meroznachnye pochti periodicheskie funktsii”, Matem. zametki, 61:1 (1997), 57–68 | MR | Zbl

[15] Danilov L. I., “O ravnomernoi approksimatsii pochti periodicheskikh po Stepanovu funktsii”, Izv. vuzov. Ser. matem., 1998, no. 5, 10–18 | MR

[16] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970 | MR

[17] Danilov L. I., Ob operatorakh superpozitsii, sokhranyayuschikh pochti periodichnost, Dep. v VINITI. 26.05.98. No1589-B98 | Zbl

[18] Danilov L. I., Ivanov A. G., “K teoreme o potochechnom maksimume v pochti periodicheskom sluchae”, Izv. vuzov. Ser. matem., 1994, no. 6, 50–59 | MR | Zbl

[19] Danilov L. I., “Pochti periodicheskie secheniya mnogoznachnykh otobrazhenii”, Izv. otdela matematiki i informatiki UdGU, no. 1, Izhevsk, 1993, 16–78 | Zbl

[20] Pankov A. A., Ogranichennye i pochti periodicheskie resheniya nelineinykh differentsialno-operatornykh uravnenii, Naukova dumka, Kiev, 1985 | MR