Almost periodic measure-valued functions
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1773-1796

Voir la notice de l'article provenant de la source Math-Net.Ru

Weakly almost periodic measure-valued functions $\mathbb R\ni t\to\mu[\,\cdot\,;t]$ taking values in the space $\mathscr M(U)$ of Borel measures of variable sign in a complete separable metric space $U$ are considered. A norm ${\|\cdot\|}_w$ introduced in the space $\mathscr M(U)$ defines a metric on the set of probability Borel measures that is equivalent to the Levy–Prokhorov metric. A connection between the almost periodicity of a measure-valued function $t\to\mu[\,\cdot\,;t]\in (\mathscr M(U),{\|\cdot\|}_w)$ and its weak almost periodicity (both in the sense of Bohr and in the sense of Stepanov) is established.
@article{SM_2000_191_12_a1,
     author = {L. I. Danilov},
     title = {Almost periodic measure-valued functions},
     journal = {Sbornik. Mathematics},
     pages = {1773--1796},
     publisher = {mathdoc},
     volume = {191},
     number = {12},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/}
}
TY  - JOUR
AU  - L. I. Danilov
TI  - Almost periodic measure-valued functions
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1773
EP  - 1796
VL  - 191
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/
LA  - en
ID  - SM_2000_191_12_a1
ER  - 
%0 Journal Article
%A L. I. Danilov
%T Almost periodic measure-valued functions
%J Sbornik. Mathematics
%D 2000
%P 1773-1796
%V 191
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/
%G en
%F SM_2000_191_12_a1
L. I. Danilov. Almost periodic measure-valued functions. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1773-1796. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/