Almost periodic measure-valued functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1773-1796
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Weakly almost periodic measure-valued functions $\mathbb R\ni t\to\mu[\,\cdot\,;t]$ taking values in the space $\mathscr M(U)$ of Borel measures of variable sign in a complete separable metric space $U$ are considered. A norm ${\|\cdot\|}_w$ introduced in the space $\mathscr M(U)$ defines a metric on the set of probability Borel measures that is equivalent to the Levy–Prokhorov metric. A connection between the almost periodicity of a measure-valued function $t\to\mu[\,\cdot\,;t]\in (\mathscr M(U),{\|\cdot\|}_w)$ and its weak almost periodicity (both in the sense of Bohr and in the sense of Stepanov) is established.
			
            
            
            
          
        
      @article{SM_2000_191_12_a1,
     author = {L. I. Danilov},
     title = {Almost periodic measure-valued functions},
     journal = {Sbornik. Mathematics},
     pages = {1773--1796},
     publisher = {mathdoc},
     volume = {191},
     number = {12},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/}
}
                      
                      
                    L. I. Danilov. Almost periodic measure-valued functions. Sbornik. Mathematics, Tome 191 (2000) no. 12, pp. 1773-1796. http://geodesic.mathdoc.fr/item/SM_2000_191_12_a1/
