On primitive representations of soluble groups of finite rank
Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1707-1748
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper it is proved, in particular, that a group is polycyclic if and only if it is soluble of finite rank, satisfies the ascending chain condition for normal subgroups and admits a faithful irreducible primitive representation over a field of characteristic zero. Methods are developed that enable one to study induced representations of nilpotent and soluble groups of finite rank.
@article{SM_2000_191_11_a5,
author = {A. V. Tushev},
title = {On primitive representations of soluble groups of finite rank},
journal = {Sbornik. Mathematics},
pages = {1707--1748},
publisher = {mathdoc},
volume = {191},
number = {11},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_11_a5/}
}
A. V. Tushev. On primitive representations of soluble groups of finite rank. Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1707-1748. http://geodesic.mathdoc.fr/item/SM_2000_191_11_a5/