On primitive representations of soluble groups of finite rank
Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1707-1748

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is proved, in particular, that a group is polycyclic if and only if it is soluble of finite rank, satisfies the ascending chain condition for normal subgroups and admits a faithful irreducible primitive representation over a field of characteristic zero. Methods are developed that enable one to study induced representations of nilpotent and soluble groups of finite rank.
@article{SM_2000_191_11_a5,
     author = {A. V. Tushev},
     title = {On primitive representations of soluble groups of finite rank},
     journal = {Sbornik. Mathematics},
     pages = {1707--1748},
     publisher = {mathdoc},
     volume = {191},
     number = {11},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_11_a5/}
}
TY  - JOUR
AU  - A. V. Tushev
TI  - On primitive representations of soluble groups of finite rank
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1707
EP  - 1748
VL  - 191
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_11_a5/
LA  - en
ID  - SM_2000_191_11_a5
ER  - 
%0 Journal Article
%A A. V. Tushev
%T On primitive representations of soluble groups of finite rank
%J Sbornik. Mathematics
%D 2000
%P 1707-1748
%V 191
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_11_a5/
%G en
%F SM_2000_191_11_a5
A. V. Tushev. On primitive representations of soluble groups of finite rank. Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1707-1748. http://geodesic.mathdoc.fr/item/SM_2000_191_11_a5/