The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space
Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1693-1705 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the action of the one-dimensional diagonal torus group, we obtain the Betti numbers (the ranks of the homology groups as free modules) of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of complex projective space.
@article{SM_2000_191_11_a4,
     author = {N. V. Timofeeva},
     title = {The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths~1 and~3 of projective space},
     journal = {Sbornik. Mathematics},
     pages = {1693--1705},
     year = {2000},
     volume = {191},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1693
EP  - 1705
VL  - 191
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/
LA  - en
ID  - SM_2000_191_11_a4
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space
%J Sbornik. Mathematics
%D 2000
%P 1693-1705
%V 191
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/
%G en
%F SM_2000_191_11_a4
N. V. Timofeeva. The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space. Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1693-1705. http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/

[1] Tikhomirov A. S., “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl

[2] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR

[3] Białynicki-Birula A., “Some theorems on actions of algebraic groups”, Ann. of Math. (2), 98 (1973), 480–497 | DOI | MR | Zbl

[4] Białynicki-Birula A., “Some properties of the decompositions of algebraic varieties determined by actions of a torus”, Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys., 24:9 (1976), 667–674 | MR | Zbl

[5] Tikhomirov A. S., Troshina T. L., “Biratsionalnaya i chislennaya geometriya mnogoobraziya polnykh par dvoetochii algebraicheskoi poverkhnosti”, Matem. zametki, 65:3 (1999), 412–419 | MR | Zbl

[6] Ellingsrud G., Smothness of $\widetilde{H_n\times S}$, Preprint, Univ. of Oslo, 1991

[7] Cheah J., The cohomology of smooth nested Hilbert schemes of points, Thesis, Univ. of Chicago, 1994

[8] Timofeeva N. V., “Gladkost i eilerova kharakteristika mnogoobraziya polnykh par $X_{23}$ nulmernykh podskhem dliny 2 i 3 algebraicheskoi poverkhnosti”, Matem. zametki, 67:2 (2000), 276–287 | MR | Zbl

[9] Ellingsrud G., Strømme S. A., “On the homology of the Hilbert scheme of points in the plane”, Invent. Math., 87 (1987), 343–352 | DOI | MR | Zbl