@article{SM_2000_191_11_a4,
author = {N. V. Timofeeva},
title = {The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths~1 and~3 of projective space},
journal = {Sbornik. Mathematics},
pages = {1693--1705},
year = {2000},
volume = {191},
number = {11},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/}
}
TY - JOUR
AU - N. V. Timofeeva
TI - The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space
JO - Sbornik. Mathematics
PY - 2000
SP - 1693
EP - 1705
VL - 191
IS - 11
UR - http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/
LA - en
ID - SM_2000_191_11_a4
ER -
%0 Journal Article
%A N. V. Timofeeva
%T The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space
%J Sbornik. Mathematics
%D 2000
%P 1693-1705
%V 191
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/
%G en
%F SM_2000_191_11_a4
N. V. Timofeeva. The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of projective space. Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1693-1705. http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/
[1] Tikhomirov A. S., “Mnogoobrazie polnykh par nulmernykh podskhem algebraicheskoi poverkhnosti”, Izv. RAN. Ser. matem., 61:6 (1997), 153–180 | MR | Zbl
[2] Fulton U., Teoriya peresechenii, Mir, M., 1989 | MR
[3] Białynicki-Birula A., “Some theorems on actions of algebraic groups”, Ann. of Math. (2), 98 (1973), 480–497 | DOI | MR | Zbl
[4] Białynicki-Birula A., “Some properties of the decompositions of algebraic varieties determined by actions of a torus”, Bull. Acad. Polon. Sci. Ser. Math. Astron. Phys., 24:9 (1976), 667–674 | MR | Zbl
[5] Tikhomirov A. S., Troshina T. L., “Biratsionalnaya i chislennaya geometriya mnogoobraziya polnykh par dvoetochii algebraicheskoi poverkhnosti”, Matem. zametki, 65:3 (1999), 412–419 | MR | Zbl
[6] Ellingsrud G., Smothness of $\widetilde{H_n\times S}$, Preprint, Univ. of Oslo, 1991
[7] Cheah J., The cohomology of smooth nested Hilbert schemes of points, Thesis, Univ. of Chicago, 1994
[8] Timofeeva N. V., “Gladkost i eilerova kharakteristika mnogoobraziya polnykh par $X_{23}$ nulmernykh podskhem dliny 2 i 3 algebraicheskoi poverkhnosti”, Matem. zametki, 67:2 (2000), 276–287 | MR | Zbl
[9] Ellingsrud G., Strømme S. A., “On the homology of the Hilbert scheme of points in the plane”, Invent. Math., 87 (1987), 343–352 | DOI | MR | Zbl