The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths~1 and~3 of projective space
Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1693-1705

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the action of the one-dimensional diagonal torus group, we obtain the Betti numbers (the ranks of the homology groups as free modules) of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths 1 and 3 of complex projective space.
@article{SM_2000_191_11_a4,
     author = {N. V. Timofeeva},
     title = {The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths~1 and~3 of projective space},
     journal = {Sbornik. Mathematics},
     pages = {1693--1705},
     publisher = {mathdoc},
     volume = {191},
     number = {11},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/}
}
TY  - JOUR
AU  - N. V. Timofeeva
TI  - The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths~1 and~3 of projective space
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1693
EP  - 1705
VL  - 191
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/
LA  - en
ID  - SM_2000_191_11_a4
ER  - 
%0 Journal Article
%A N. V. Timofeeva
%T The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths~1 and~3 of projective space
%J Sbornik. Mathematics
%D 2000
%P 1693-1705
%V 191
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/
%G en
%F SM_2000_191_11_a4
N. V. Timofeeva. The homology groups of the variety of complete pairs $X_{13}$ of zero-dimensional subschemes of lengths~1 and~3 of projective space. Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1693-1705. http://geodesic.mathdoc.fr/item/SM_2000_191_11_a4/