Segment-arrow diagrams and invariants of ornaments
Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1635-1666 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An ornament is a finite collection of closed oriented curves in the plane no three of which have common points. Homotopy invariants of ornaments are considered. Similarly to the case of knot classification, all invariants of ornaments are equal to the linking numbers with appropriate cycles in the discriminant, that is, in the set of collections of curves with forbidden intersections. Finite-order (or Vassiliev) invariants are those for which the corresponding cycle can be described in terms of finitely many strata in the natural stratification of the discriminant by the types of forbidden points. The calculation of these invariants is reduced to the calculation of certain cohomological spectral sequences. A new explicit combinatorial construction of a series of finite order invariants of ornaments is presented. It is shown that some previously known series of finite order invariants are contained in this series, which can also be expressed in terms of cohomology classes of natural finite-dimensional topological spaces.
@article{SM_2000_191_11_a2,
     author = {A. B. Merkov},
     title = {Segment-arrow diagrams and invariants of ornaments},
     journal = {Sbornik. Mathematics},
     pages = {1635--1666},
     year = {2000},
     volume = {191},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_11_a2/}
}
TY  - JOUR
AU  - A. B. Merkov
TI  - Segment-arrow diagrams and invariants of ornaments
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1635
EP  - 1666
VL  - 191
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_11_a2/
LA  - en
ID  - SM_2000_191_11_a2
ER  - 
%0 Journal Article
%A A. B. Merkov
%T Segment-arrow diagrams and invariants of ornaments
%J Sbornik. Mathematics
%D 2000
%P 1635-1666
%V 191
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2000_191_11_a2/
%G en
%F SM_2000_191_11_a2
A. B. Merkov. Segment-arrow diagrams and invariants of ornaments. Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1635-1666. http://geodesic.mathdoc.fr/item/SM_2000_191_11_a2/

[1] Polyak M., Viro O., “On the Casson knot invariant”, J. Knot Theory Ramifications (to appear) | MR | Zbl

[2] Polyak M., Viro O., “Gauss diagram formulas for Vassiliev invariants”, Internat. Math. Res. Notices, 11 (1994), 445–453 | DOI | MR | Zbl

[3] Goussarov M., Polyak M., Viro O., “Finite type invariants of classical and virtual knots”, Topology (to appear)

[4] Vassiliev V. A., “Cohomology of knot spaces”, Theory of singularities and its applications, Adv. Soviet Math., 1, ed. V. I. Arnold, Amer. Math. Soc., Providence, RI, 1990, 23–69 | MR

[5] Vassiliev V. A., “Invariants of ornaments”, Singularities and bifurcations, Adv. Soviet Math., 21, ed. V. I. Arnold, Amer. Math. Soc., Providence, RI, 1994, 225–261 | MR

[6] Merkov A. B., “Finite-order invariants of ornaments”, J. Math. Sci., 90:4 (1998), 2215–2273 ; http://www.botik.ru/\allowbreakd̃uzhin/as-papers/finv-dvi.zip | DOI | MR | Zbl

[7] Merkov A. B., “Vassiliev invariants classify flat braids”, Amer. Math. Soc. Transl. Ser. 2, 190 (1999), 83–102 | MR | Zbl

[8] Arnold V. I., “O nekotorykh topologicheskikh invariantakh algebraicheskikh funktsii”, Tr. MMO, 21, URSS, M., 1970, 27–46 | MR | Zbl

[9] Vassiliev V. A., Complements of discriminants of smooth maps: topology and applications, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[10] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997 | MR

[11] Polyak M., Invariants of plane curves via Gauss diagrams, Preprint MPI/116-94, Max-Plank-Institut, Bonn, 1994

[12] Merkov A. B., Vassiliev invariants classify plane curves and doodles, Preprint, 1998 ; http://www.botik.ru/\allowbreakd̃uzhin/as-papers/ficd-dvi.zip | Zbl

[13] Goreski M., Mak-Fërson R., Stratifitsirovannaya teoriya Morsa, Mir, M., 1991

[14] Ziegler G. M., Živaljević R. T., “Homotopy type of arrangements via diagrams of spaces”, Math. Ann., 295 (1993), 527–548 | DOI | MR | Zbl

[15] Björner A., Welker V., “The homology of "$k$-equal" manifolds and related partition lattices”, Adv. Math., 110:2 (1995), 277–313 | DOI | MR | Zbl

[16] Björner A., Wachs M. L., “Shellable non-pure complexes and posets, I”, Trans. Amer. Math. Soc., 348 (1996), 1299–1327 | DOI | MR | Zbl

[17] Fuks D. B., “Kogomologii grupp kos $\operatorname{mod}2$”, Funkts. analiz i ego prilozh., 4:2 (1970), 62–73 | MR | Zbl

[18] Vasilev V. A., Chastnoe soobschenie