On a non-local problem for irregular equations
Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1607-1633

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the distribution on the complex plane $\mathbb C$ of the spectrum $$ \sigma L=P\sigma L\cup C\sigma L\cup R\sigma L $$ of the operator $L$ generated by the closure in $H=\mathscr L_2(T_1,T_2)\otimes\mathfrak H$ of an irregular operation $a(t)D_t+A$ originally defined on the smooth functions $u(t)\colon[T_1,T_2]\to\mathfrak H$ that satisfy the non-local conditions: $\mu\cdot u(T_1)-u(T_2)=0$. Here $a(t)=\sum_{k=1}^2a_k|t|^{\alpha_k}\chi_k(t)$; $a_k\in\mathbb C$, $a_k\ne 0$; $\alpha_k\in\mathbb R$; $\chi_k(t)$ is the characteristic function of the interval with end-points $0,T_k$; $-\infty$; $D_t\equiv d/dt$; $A$ is a model operator acting in a Hilbert space $\mathfrak H$; $\mu\in\overline{\mathbb C}$, $\mu\ne0,\infty$.
@article{SM_2000_191_11_a1,
     author = {V. V. Kornienko},
     title = {On a non-local problem for irregular equations},
     journal = {Sbornik. Mathematics},
     pages = {1607--1633},
     publisher = {mathdoc},
     volume = {191},
     number = {11},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_11_a1/}
}
TY  - JOUR
AU  - V. V. Kornienko
TI  - On a non-local problem for irregular equations
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1607
EP  - 1633
VL  - 191
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_11_a1/
LA  - en
ID  - SM_2000_191_11_a1
ER  - 
%0 Journal Article
%A V. V. Kornienko
%T On a non-local problem for irregular equations
%J Sbornik. Mathematics
%D 2000
%P 1607-1633
%V 191
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_11_a1/
%G en
%F SM_2000_191_11_a1
V. V. Kornienko. On a non-local problem for irregular equations. Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1607-1633. http://geodesic.mathdoc.fr/item/SM_2000_191_11_a1/