On a non-local problem for irregular equations
Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1607-1633 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the distribution on the complex plane $\mathbb C$ of the spectrum $$ \sigma L=P\sigma L\cup C\sigma L\cup R\sigma L $$ of the operator $L$ generated by the closure in $H=\mathscr L_2(T_1,T_2)\otimes\mathfrak H$ of an irregular operation $a(t)D_t+A$ originally defined on the smooth functions $u(t)\colon[T_1,T_2]\to\mathfrak H$ that satisfy the non-local conditions: $\mu\cdot u(T_1)-u(T_2)=0$. Here $a(t)=\sum_{k=1}^2a_k|t|^{\alpha_k}\chi_k(t)$; $a_k\in\mathbb C$, $a_k\ne 0$; $\alpha_k\in\mathbb R$; $\chi_k(t)$ is the characteristic function of the interval with end-points $0,T_k$; $-\infty; $D_t\equiv d/dt$; $A$ is a model operator acting in a Hilbert space $\mathfrak H$; $\mu\in\overline{\mathbb C}$, $\mu\ne0,\infty$.
@article{SM_2000_191_11_a1,
     author = {V. V. Kornienko},
     title = {On a non-local problem for irregular equations},
     journal = {Sbornik. Mathematics},
     pages = {1607--1633},
     year = {2000},
     volume = {191},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_11_a1/}
}
TY  - JOUR
AU  - V. V. Kornienko
TI  - On a non-local problem for irregular equations
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1607
EP  - 1633
VL  - 191
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_11_a1/
LA  - en
ID  - SM_2000_191_11_a1
ER  - 
%0 Journal Article
%A V. V. Kornienko
%T On a non-local problem for irregular equations
%J Sbornik. Mathematics
%D 2000
%P 1607-1633
%V 191
%N 11
%U http://geodesic.mathdoc.fr/item/SM_2000_191_11_a1/
%G en
%F SM_2000_191_11_a1
V. V. Kornienko. On a non-local problem for irregular equations. Sbornik. Mathematics, Tome 191 (2000) no. 11, pp. 1607-1633. http://geodesic.mathdoc.fr/item/SM_2000_191_11_a1/

[1] Dezin A. A., “Operatory s pervoi proizvodnoi vo “vremeni” i nelokalnye granichnye usloviya”, Izv. AN SSSR. Ser. matem., 31:1 (1967), 61–86 | MR | Zbl

[2] Kornienko V. V., “O spektre zadachi Koshi dlya irregulyarnykh uravnenii”, Materialy mezhdunarodnoi konferentsii “Aktualnye problemy teoreticheskoi i prikladnoi matematiki”, SamGU, Samarkand, 1997, 63–68

[3] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[4] Dezin A. A., “O slaboi i silnoi irregulyarnosti”, Differents. uravneniya, 17:10 (1981), 1851–1858 | MR | Zbl

[5] Romanko V. K., “Trekhtochechnye granichnye zadachi dlya uravnenii s razryvnymi koeffitsientami”, Differents. uravneniya, 15:3 (1979), 479–491 | MR | Zbl

[6] Kislov N. V., Neodnorodnye granichnye zadachi dlya differentsialno-operatornykh uravnenii, Dis. $\dots$ dokt. fiz.-matem. nauk, Moskva, 1988

[7] Kornienko V. V., “K slaboi i silnoi irregulyarnosti”, Sib. matem. zhurn., 37:3 (1996), 599–609 | MR | Zbl

[8] Sobolev S. L., Nekotorye prilozheniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[9] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1960 | MR | Zbl

[10] Dezin A. A., Obschie voprosy teorii granichnykh zadach, Nauka, M., 1980 | MR | Zbl

[11] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183 | MR

[12] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR