An inverse problem for differential operator pencils
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1561-1586

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse spectral problem of recovering a second-order differential operator pencil on the half-line is investigated. A uniqueness theorem is proved; necessary and sufficient conditions for the solubility, and an algorithm for the solution of the inverse problem are obtained. Relations with inverse problems for partial differential equations are pointed out.
@article{SM_2000_191_10_a8,
     author = {V. A. Yurko},
     title = {An inverse problem for differential operator pencils},
     journal = {Sbornik. Mathematics},
     pages = {1561--1586},
     publisher = {mathdoc},
     volume = {191},
     number = {10},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a8/}
}
TY  - JOUR
AU  - V. A. Yurko
TI  - An inverse problem for differential operator pencils
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1561
EP  - 1586
VL  - 191
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a8/
LA  - en
ID  - SM_2000_191_10_a8
ER  - 
%0 Journal Article
%A V. A. Yurko
%T An inverse problem for differential operator pencils
%J Sbornik. Mathematics
%D 2000
%P 1561-1586
%V 191
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a8/
%G en
%F SM_2000_191_10_a8
V. A. Yurko. An inverse problem for differential operator pencils. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1561-1586. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a8/