Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1541-1559 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Gevrey regularity of global attractors of dynamical systems generated by a certain class of coupled dissipative systems of damped non-linear wave equations with periodic boundary conditions is established. This result means that the elements of the attractor are real-analytic functions in the spatial variables. As an application the existence of two determining nodes for the corresponding problem in one spatial dimension is proved.
@article{SM_2000_191_10_a7,
     author = {I. D. Chueshov},
     title = {Analyticity of global attractors and determining nodes for a~class of damped non-linear wave equations},
     journal = {Sbornik. Mathematics},
     pages = {1541--1559},
     year = {2000},
     volume = {191},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/}
}
TY  - JOUR
AU  - I. D. Chueshov
TI  - Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1541
EP  - 1559
VL  - 191
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/
LA  - en
ID  - SM_2000_191_10_a7
ER  - 
%0 Journal Article
%A I. D. Chueshov
%T Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations
%J Sbornik. Mathematics
%D 2000
%P 1541-1559
%V 191
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/
%G en
%F SM_2000_191_10_a7
I. D. Chueshov. Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1541-1559. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/

[1] Foias C., Temam R., “Gevrey class regularity for the solutions of the Navier–Stokes equations”, J. Funct. Anal., 87 (1989), 359–369 | DOI | MR | Zbl

[2] Promislow K., “Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations”, Nonlinear Anal., 16 (1991), 959–980 | DOI | MR | Zbl

[3] Kukavica I., “On the number of determining nodes for the Ginzburg–Landau equation”, Nonlinearity, 5 (1992), 997–1006 | DOI | MR | Zbl

[4] Foias C., Kukavica I., “Determining nodes for the Kuramoto–Sivashinsky equation”, J. Dynam. Differential Equations, 7 (1995), 365–373 | DOI | MR | Zbl

[5] Ferrari A. B., Titi E. S., “Gevrey regularity of solutions of a class of analytic nonlinear parabolic equations”, Comm. Partial Differential Equations, 2 (1998), 1–16 | MR | Zbl

[6] Goubet O., “Regularity of the attractor for a weakly damped driven nonlinear Scrödinger equation”, Appl. Anal., 60 (1996), 99–119 | DOI | MR | Zbl

[7] Oliver M., Titi E. S., “Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Scrödinger equation”, Indiana Univ. Math. J., 47 (1998), 49–73 | DOI | MR | Zbl

[8] Chueshov I. D., “Teoriya funktsionalov, odnoznachno opredelyayuschikh asimptoticheskuyu dinamiku beskonechnomernykh dissipativnykh sistem”, UMN, 53:4 (1998), 77–124 | MR | Zbl

[9] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravneniya Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[10] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[11] Hale J. K., Asymptotic behavior of dissipative systems, Amer. Math. Soc., Providence, 1988 | MR | Zbl

[12] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York, 1988 | MR | Zbl

[13] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl

[14] Ghidaglia J.-M., Temam R., “Regularity of the solutions of second order evolution equations and their attractors”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 485–511 | MR | Zbl

[15] Lions J.-L., Quelques methodes de resolution de problemes aus limites non lineaires, Dunod, Paris, 1969 | MR | Zbl