Analyticity of global attractors and determining nodes for a~class of damped non-linear wave equations
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1541-1559
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The Gevrey regularity of global attractors of dynamical systems  generated by a certain class of coupled dissipative systems of damped non-linear wave equations with periodic boundary conditions is established. This result means that the elements of the attractor are real-analytic functions in the spatial variables. As an application the existence of two determining nodes for the corresponding problem in one spatial dimension is proved.
			
            
            
            
          
        
      @article{SM_2000_191_10_a7,
     author = {I. D. Chueshov},
     title = {Analyticity of global attractors and determining nodes for a~class of damped non-linear wave equations},
     journal = {Sbornik. Mathematics},
     pages = {1541--1559},
     publisher = {mathdoc},
     volume = {191},
     number = {10},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/}
}
                      
                      
                    TY - JOUR AU - I. D. Chueshov TI - Analyticity of global attractors and determining nodes for a~class of damped non-linear wave equations JO - Sbornik. Mathematics PY - 2000 SP - 1541 EP - 1559 VL - 191 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/ LA - en ID - SM_2000_191_10_a7 ER -
I. D. Chueshov. Analyticity of global attractors and determining nodes for a~class of damped non-linear wave equations. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1541-1559. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/
