@article{SM_2000_191_10_a7,
author = {I. D. Chueshov},
title = {Analyticity of global attractors and determining nodes for a~class of damped non-linear wave equations},
journal = {Sbornik. Mathematics},
pages = {1541--1559},
year = {2000},
volume = {191},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/}
}
TY - JOUR AU - I. D. Chueshov TI - Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations JO - Sbornik. Mathematics PY - 2000 SP - 1541 EP - 1559 VL - 191 IS - 10 UR - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/ LA - en ID - SM_2000_191_10_a7 ER -
I. D. Chueshov. Analyticity of global attractors and determining nodes for a class of damped non-linear wave equations. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1541-1559. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a7/
[1] Foias C., Temam R., “Gevrey class regularity for the solutions of the Navier–Stokes equations”, J. Funct. Anal., 87 (1989), 359–369 | DOI | MR | Zbl
[2] Promislow K., “Time analyticity and Gevrey regularity for solutions of a class of dissipative partial differential equations”, Nonlinear Anal., 16 (1991), 959–980 | DOI | MR | Zbl
[3] Kukavica I., “On the number of determining nodes for the Ginzburg–Landau equation”, Nonlinearity, 5 (1992), 997–1006 | DOI | MR | Zbl
[4] Foias C., Kukavica I., “Determining nodes for the Kuramoto–Sivashinsky equation”, J. Dynam. Differential Equations, 7 (1995), 365–373 | DOI | MR | Zbl
[5] Ferrari A. B., Titi E. S., “Gevrey regularity of solutions of a class of analytic nonlinear parabolic equations”, Comm. Partial Differential Equations, 2 (1998), 1–16 | MR | Zbl
[6] Goubet O., “Regularity of the attractor for a weakly damped driven nonlinear Scrödinger equation”, Appl. Anal., 60 (1996), 99–119 | DOI | MR | Zbl
[7] Oliver M., Titi E. S., “Analyticity of the attractor and the number of determining nodes for a weakly damped driven nonlinear Scrödinger equation”, Indiana Univ. Math. J., 47 (1998), 49–73 | DOI | MR | Zbl
[8] Chueshov I. D., “Teoriya funktsionalov, odnoznachno opredelyayuschikh asimptoticheskuyu dinamiku beskonechnomernykh dissipativnykh sistem”, UMN, 53:4 (1998), 77–124 | MR | Zbl
[9] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravneniya Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl
[10] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl
[11] Hale J. K., Asymptotic behavior of dissipative systems, Amer. Math. Soc., Providence, 1988 | MR | Zbl
[12] Temam R., Infinite-dimensional dynamical systems in mechanics and physics, Springer-Verlag, New York, 1988 | MR | Zbl
[13] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl
[14] Ghidaglia J.-M., Temam R., “Regularity of the solutions of second order evolution equations and their attractors”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 485–511 | MR | Zbl
[15] Lions J.-L., Quelques methodes de resolution de problemes aus limites non lineaires, Dunod, Paris, 1969 | MR | Zbl