Variational calculus on Banach spaces
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1527-1540
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of variational calculus is considered in a (variable) subdomain of a Banach space. Analogues of the basic principles of the finite-dimensional theory are derived: the main formula for variations of a functional, necessary conditions of an extremum, Noether's theorem. All the results obtained are dimension-invariant and become the classical ones in the finite-dimensional setting. The main tool of the analysis is the theory of surface integration in Banach spaces.
@article{SM_2000_191_10_a6,
author = {A. V. Uglanov},
title = {Variational calculus on {Banach} spaces},
journal = {Sbornik. Mathematics},
pages = {1527--1540},
publisher = {mathdoc},
volume = {191},
number = {10},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/}
}
A. V. Uglanov. Variational calculus on Banach spaces. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1527-1540. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/