Variational calculus on Banach spaces
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1527-1540 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of variational calculus is considered in a (variable) subdomain of a Banach space. Analogues of the basic principles of the finite-dimensional theory are derived: the main formula for variations of a functional, necessary conditions of an extremum, Noether's theorem. All the results obtained are dimension-invariant and become the classical ones in the finite-dimensional setting. The main tool of the analysis is the theory of surface integration in Banach spaces.
@article{SM_2000_191_10_a6,
     author = {A. V. Uglanov},
     title = {Variational calculus on {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1527--1540},
     year = {2000},
     volume = {191},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/}
}
TY  - JOUR
AU  - A. V. Uglanov
TI  - Variational calculus on Banach spaces
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1527
EP  - 1540
VL  - 191
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/
LA  - en
ID  - SM_2000_191_10_a6
ER  - 
%0 Journal Article
%A A. V. Uglanov
%T Variational calculus on Banach spaces
%J Sbornik. Mathematics
%D 2000
%P 1527-1540
%V 191
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/
%G en
%F SM_2000_191_10_a6
A. V. Uglanov. Variational calculus on Banach spaces. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1527-1540. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/

[1] Uglanov A. V., “On optimal organization of queueing systems with finite sources of requirements”, Sem. de probabilita e statistica matematica (Italy), Cassino Univ., 1998, 64–95

[2] Dalecky Yu. L., Steblovskaya V. R., “On infinite-dimensional variational problems”, Stochastic Anal. Appl., 14:1 (1996), 47–71 | DOI | MR | Zbl

[3] Vaitszekker Kh., Smolyanov O. G., “Teorema Neter dlya beskonechnomernykh variatsionnykh zadach”, Dokl. RAN, 361:5 (1998), 583–586 | MR

[4] Diestel J., Uhl J. J., Vector measures, Amer. Math. Soc., Providence, 1977 | MR | Zbl

[5] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[6] Pich A., Operatornye idealy, Mir, M., 1982 | MR

[7] Efimova E. I., O predelnom perekhode pod znakom vektornogo integrala, Dep. v VINITI 03.02.1989. No 736–B89, Yaroslavskii gos. un-t, Yaroslavl, 1989, 11 pp.

[8] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR

[9] Pich A., Yadernye lokalno vypuklye prostranstva, Mir, M., 1977 | MR

[10] Uglanov A. V., “Poverkhnostnye integraly v prostranstvakh Freshe”, Matem. sb., 189:11 (1998), 139–157 | MR | Zbl

[11] Go Kh.-S., Gaussovskie mery v banakhovykh prostranstvakh, Mir, M., 1979

[12] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR

[13] Efimova E. I., Uglanov A. V., “Formuly vektornogo analiza na banakhovom prostranstve”, Dokl. AN SSSR, 271:6 (1983), 1302–1306 | MR

[14] Gelfand I. M., Fomin S. V., Variatsionnoe ischislenie, Fizmatgiz, M., 1961 | MR

[15] Smolyanov O. G., Uglanov A. V., “Vsyakoe gilbertovo podprostranstvo vinerovskogo prostranstva imeet meru nul”, Matem. zametki, 14:3 (1973), 369–374 | MR | Zbl

[16] Lobuzov A. A., Issledovanie pervykh kraevykh zadach dlya ellipticheskikh i parabolicheskikh uravnenii v banakhovykh prostranstvakh, Dis. $\dots$ kand. fiz.-matem. nauk, MGU, M., 1982

[17] Venttsel A. D., Kurs teorii sluchainykh protsessov, Nauka, M., 1975 | MR

[18] Uglanov A. V., “O faktorizatsii gladkikh mer”, Matem. zametki, 48:5 (1990), 121–127 | MR | Zbl

[19] Uglanov A. V., “Chastnoe gladkikh mer est gladkaya funktsiya”, Izv. vuzov. Ser. matem., 1989, no. 9, 72–76 | MR | Zbl

[20] Bonic R., Frumpton J., “Differentiable functions on certain Banach spaces”, Bull. Amer. Math. Soc., 71:2 (1965), 393–395 | DOI | MR | Zbl