Variational calculus on Banach spaces
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1527-1540

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of variational calculus is considered in a (variable) subdomain of a Banach space. Analogues of the basic principles of the finite-dimensional theory are derived: the main formula for variations of a functional, necessary conditions of an extremum, Noether's theorem. All the results obtained are dimension-invariant and become the classical ones in the finite-dimensional setting. The main tool of the analysis is the theory of surface integration in Banach spaces.
@article{SM_2000_191_10_a6,
     author = {A. V. Uglanov},
     title = {Variational calculus on {Banach} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1527--1540},
     publisher = {mathdoc},
     volume = {191},
     number = {10},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/}
}
TY  - JOUR
AU  - A. V. Uglanov
TI  - Variational calculus on Banach spaces
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1527
EP  - 1540
VL  - 191
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/
LA  - en
ID  - SM_2000_191_10_a6
ER  - 
%0 Journal Article
%A A. V. Uglanov
%T Variational calculus on Banach spaces
%J Sbornik. Mathematics
%D 2000
%P 1527-1540
%V 191
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/
%G en
%F SM_2000_191_10_a6
A. V. Uglanov. Variational calculus on Banach spaces. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1527-1540. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a6/