Two-dimensional manifolds with metrics of revolution
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1507-1525 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a study of the topological and metric structure of two-dimensional manifolds with a metric that is locally a metric of revolution. In the case of compact manifolds this problem can be thoroughly investigated, and in particular it is explained why there are no closed analytic surfaces of revolution in $\mathbb R^3$ other than a sphere and a torus (moreover, in the smoothness class $C^\infty$ such surfaces, understood in a certain generalized sense, exist in any topological class).
@article{SM_2000_191_10_a5,
     author = {I. Kh. Sabitov},
     title = {Two-dimensional manifolds with metrics of revolution},
     journal = {Sbornik. Mathematics},
     pages = {1507--1525},
     year = {2000},
     volume = {191},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Two-dimensional manifolds with metrics of revolution
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1507
EP  - 1525
VL  - 191
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/
LA  - en
ID  - SM_2000_191_10_a5
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Two-dimensional manifolds with metrics of revolution
%J Sbornik. Mathematics
%D 2000
%P 1507-1525
%V 191
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/
%G en
%F SM_2000_191_10_a5
I. Kh. Sabitov. Two-dimensional manifolds with metrics of revolution. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1507-1525. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/

[1] Kamyshanskii N. R., Solodovnikov A. S., “Poluprivodimye analiticheskie prostranstva “v tselom””, UMN, 35:5 (1980), 3–51 | MR

[2] Solodovnikov A. S., “O stroenii v tselom poluprivodimykh analiticheskikh prostranstv”, Trudy sem. po vektornomu i tenzornomu analizu, no. 15, MGU, M., 1970, 79–118 | MR

[3] Solodovnikov A. S., “Globalnoe stroenie poluprivodimykh rimanovykh prostranstv klassa $R^\infty$”, Matem. sb., 184:5 (1993), 3–18 | MR | Zbl

[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[5] Sabitov I. Kh., “Polnyi perechen tsentralno-simmetrichnykh form dvumernykh metrik postoyannoi krivizny”, Izv. vuzov. Ser. matem., 1994, no. 3, 65–68 | MR | Zbl

[6] Sabitov I. Kh., “Izometricheskie preobrazovaniya poverkhnosti, porozhdayuschie konformnye otobrazheniya ee na sebya”, Matem. sb., 189:1 (1998), 119–132 | MR | Zbl

[7] Spivak M., A comprehensive introduction to differential geometry, V. 5, Publish or Perish, Berkley, 1979

[8] Sabitov I. Kh., “Kvazikonformnye otobrazheniya poverkhnosti, porozhdennye ee izometricheskimi preobrazovaniyami, i izgibaniya poverkhnosti na sebya”, Fundament. i prikl. matem., 1:1 (1995), 281–288 | MR | Zbl

[9] Rembs E., “Infinitesimal Verbiegungen von Flächen in sich”, Math. Nachr., 1957, no. 16, 134–136 | DOI | MR | Zbl

[10] Sabitov I. Kh., “Dvumernye rimanovy mnogoobraziya s lokalnoi metrikoi vrascheniya”, Tezisy dokladov na 8-i Vsesoyuznoi nauchnoi konferentsii po sovrem. problemam differents. geometrii, Odesskii gos. un-t im. I. I. Mechnikova, Odessa, 1984, 138

[11] Sabitov I. Kh., “Two dimensional Riemannian manifolds with local circular symmetry”, Colloquim on Differential Geometry (Hungary, 1989, August 20–26), János Bolyai Math. Soc., Eger, 1989, 47–48