@article{SM_2000_191_10_a5,
author = {I. Kh. Sabitov},
title = {Two-dimensional manifolds with metrics of revolution},
journal = {Sbornik. Mathematics},
pages = {1507--1525},
year = {2000},
volume = {191},
number = {10},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/}
}
I. Kh. Sabitov. Two-dimensional manifolds with metrics of revolution. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1507-1525. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/
[1] Kamyshanskii N. R., Solodovnikov A. S., “Poluprivodimye analiticheskie prostranstva “v tselom””, UMN, 35:5 (1980), 3–51 | MR
[2] Solodovnikov A. S., “O stroenii v tselom poluprivodimykh analiticheskikh prostranstv”, Trudy sem. po vektornomu i tenzornomu analizu, no. 15, MGU, M., 1970, 79–118 | MR
[3] Solodovnikov A. S., “Globalnoe stroenie poluprivodimykh rimanovykh prostranstv klassa $R^\infty$”, Matem. sb., 184:5 (1993), 3–18 | MR | Zbl
[4] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR
[5] Sabitov I. Kh., “Polnyi perechen tsentralno-simmetrichnykh form dvumernykh metrik postoyannoi krivizny”, Izv. vuzov. Ser. matem., 1994, no. 3, 65–68 | MR | Zbl
[6] Sabitov I. Kh., “Izometricheskie preobrazovaniya poverkhnosti, porozhdayuschie konformnye otobrazheniya ee na sebya”, Matem. sb., 189:1 (1998), 119–132 | MR | Zbl
[7] Spivak M., A comprehensive introduction to differential geometry, V. 5, Publish or Perish, Berkley, 1979
[8] Sabitov I. Kh., “Kvazikonformnye otobrazheniya poverkhnosti, porozhdennye ee izometricheskimi preobrazovaniyami, i izgibaniya poverkhnosti na sebya”, Fundament. i prikl. matem., 1:1 (1995), 281–288 | MR | Zbl
[9] Rembs E., “Infinitesimal Verbiegungen von Flächen in sich”, Math. Nachr., 1957, no. 16, 134–136 | DOI | MR | Zbl
[10] Sabitov I. Kh., “Dvumernye rimanovy mnogoobraziya s lokalnoi metrikoi vrascheniya”, Tezisy dokladov na 8-i Vsesoyuznoi nauchnoi konferentsii po sovrem. problemam differents. geometrii, Odesskii gos. un-t im. I. I. Mechnikova, Odessa, 1984, 138
[11] Sabitov I. Kh., “Two dimensional Riemannian manifolds with local circular symmetry”, Colloquim on Differential Geometry (Hungary, 1989, August 20–26), János Bolyai Math. Soc., Eger, 1989, 47–48