Two-dimensional manifolds with metrics of revolution
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1507-1525

Voir la notice de l'article provenant de la source Math-Net.Ru

This is a study of the topological and metric structure of two-dimensional manifolds with a metric that is locally a metric of revolution. In the case of compact manifolds this problem can be thoroughly investigated, and in particular it is explained why there are no closed analytic surfaces of revolution in $\mathbb R^3$ other than a sphere and a torus (moreover, in the smoothness class $C^\infty$ such surfaces, understood in a certain generalized sense, exist in any topological class).
@article{SM_2000_191_10_a5,
     author = {I. Kh. Sabitov},
     title = {Two-dimensional manifolds with metrics of revolution},
     journal = {Sbornik. Mathematics},
     pages = {1507--1525},
     publisher = {mathdoc},
     volume = {191},
     number = {10},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - Two-dimensional manifolds with metrics of revolution
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1507
EP  - 1525
VL  - 191
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/
LA  - en
ID  - SM_2000_191_10_a5
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T Two-dimensional manifolds with metrics of revolution
%J Sbornik. Mathematics
%D 2000
%P 1507-1525
%V 191
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/
%G en
%F SM_2000_191_10_a5
I. Kh. Sabitov. Two-dimensional manifolds with metrics of revolution. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1507-1525. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a5/