Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1477-1506 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The dual to a weighted space $G$ of infinitely smooth functions on the real axis is described by means of the Fourier–Laplace transformation. This result is used in the study of the surjectivity in $G$ of an infinite-order linear differential operator with constant coefficients.
@article{SM_2000_191_10_a4,
     author = {I. Kh. Musin},
     title = {Fourier{\textendash}Laplace transformation of functionals on a~weighted space of infinitely smooth functions},
     journal = {Sbornik. Mathematics},
     pages = {1477--1506},
     year = {2000},
     volume = {191},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a4/}
}
TY  - JOUR
AU  - I. Kh. Musin
TI  - Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1477
EP  - 1506
VL  - 191
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a4/
LA  - en
ID  - SM_2000_191_10_a4
ER  - 
%0 Journal Article
%A I. Kh. Musin
%T Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions
%J Sbornik. Mathematics
%D 2000
%P 1477-1506
%V 191
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a4/
%G en
%F SM_2000_191_10_a4
I. Kh. Musin. Fourier–Laplace transformation of functionals on a weighted space of infinitely smooth functions. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1477-1506. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a4/

[1] Mandelbroit S., Primykayuschie ryady, regulyarizatsiya posledovatelnostei, primeneniya, IL, M., 1955

[2] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[3] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Obobschennye funktsii. Vyp. 1, GIFML, M., 1958

[4] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Obobschennye funktsii. Vyp. 2, GIFML, M., 1958

[5] Taylor B. A., “Analytically uniform spaces of infinitely differentiable functions”, Comm. Pure Appl. Math., 24:1 (1971), 39–51 | DOI | MR | Zbl

[6] Yulmukhametov R. S., “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Matem. sb., 130 (172):4 (8) (1986), 500–519 | MR | Zbl

[7] Yulmukhametov R. S., “Approksimatsiya subgarmonicheskikh funktsii”, Anal. Math., 11:3 (1985), 257–282 | DOI | MR | Zbl

[8] Solomesch M. I., Operatory tipa svertki v nekotorykh prostranstvakh analiticheskikh funktsii, Dis. $\dots$ kand. fiz.-matem. nauk, M., 1995 | Zbl

[9] Napalkov V. V., Solomesch M. I., “Otsenka izmeneniya tseloi funktsii pri sdvigakh ee nulei”, Dokl. RAN, 342:6 (1995), 739–741 | MR | Zbl

[10] Solomesch M. I., K teoreme R. S. Yulmukhametova ob approksimatsii subgarmonicheskikh funktsii, Dep. v VINITI 24.07.1992. No2447–B92, In-t matematiki UrO RAN, Ufa, 1992

[11] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[12] Sebashtyan-i-Silva Zh., “O nekotorykh klassakh lokalno vypuklykh prostranstv, vazhnykh v prilozheniyakh”, Matematika, Sb. perevodov, 1, no. 1, IL, M., 1957, 60–77 | MR

[13] Napalkov V. V., “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 287–305 | MR | Zbl

[14] Popenov S. V., “O vesovom prostranstve funktsii, analiticheskikh v neogranichennoi vypukloi oblasti v $\mathbb C^m$”, Matem. zametki, 40:3 (1986), 374–384 | MR | Zbl

[15] Mannanov M. M., “Opisanie odnogo klassa analiticheskikh funktsionalov”, Sib. matem. zhurn., 31:3 (1990), 62–72 | MR | Zbl

[16] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[17] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Mir, M., 1984 | MR

[18] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[19] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[20] Dedonne Zh., Shvarts L., “Dvoistvennost v prostranstvakh $(\mathscr F)$ i $(\mathscr{LF})$”, Matematika, Sb. perevodov, 2, no. 2, IL, M., 1958, 77–107