Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1477-1506
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The dual to a weighted space $G$ of infinitely smooth functions on the real axis is described by means of the Fourier–Laplace transformation. This result is used in the study of the surjectivity in $G$ of an infinite-order linear differential operator with constant coefficients.
			
            
            
            
          
        
      @article{SM_2000_191_10_a4,
     author = {I. Kh. Musin},
     title = {Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions},
     journal = {Sbornik. Mathematics},
     pages = {1477--1506},
     publisher = {mathdoc},
     volume = {191},
     number = {10},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a4/}
}
                      
                      
                    TY - JOUR AU - I. Kh. Musin TI - Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions JO - Sbornik. Mathematics PY - 2000 SP - 1477 EP - 1506 VL - 191 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a4/ LA - en ID - SM_2000_191_10_a4 ER -
I. Kh. Musin. Fourier--Laplace transformation of functionals on a~weighted space of infinitely smooth functions. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1477-1506. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a4/