Coxeter transformations and the number “$-1$
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1471-1476 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Coxeter transformations associated with trees are considered. The number "$-1$" plays an exceptional role with respect to the spectra of trees. The sets of all trees containing and not containing "$-1$" in the spectrum are studied. Their densities are determined, systems of generating elements and operations are found, and the properties of the edges of trees from these sets are studied.
@article{SM_2000_191_10_a3,
     author = {V. A. Kolmykov},
     title = {Coxeter transformations and the number~{\textquotedblleft}$-1${\textquotedblright}},
     journal = {Sbornik. Mathematics},
     pages = {1471--1476},
     year = {2000},
     volume = {191},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a3/}
}
TY  - JOUR
AU  - V. A. Kolmykov
TI  - Coxeter transformations and the number “$-1$”
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1471
EP  - 1476
VL  - 191
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a3/
LA  - en
ID  - SM_2000_191_10_a3
ER  - 
%0 Journal Article
%A V. A. Kolmykov
%T Coxeter transformations and the number “$-1$”
%J Sbornik. Mathematics
%D 2000
%P 1471-1476
%V 191
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a3/
%G en
%F SM_2000_191_10_a3
V. A. Kolmykov. Coxeter transformations and the number “$-1$”. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1471-1476. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a3/

[1] Burbaki N., Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa. Gruppy, porozhdennye otrazheniyami. Sistemy kornei, Mir, M., 1972 | MR | Zbl

[2] Bernshtein I. N., Gelfand I. M., Ponomarev V. A., “Funktory Kokstera i teorema Gabrielya”, UMN, 28:2 (1973), 19–33 | MR

[3] Subbotin V. F., Stekolschik R. B., “Spektr preobrazovaniya Kokstera i regulyarnost predstavlenii grafov”, Trudy matem. f-ta Voronezhskogo gos. un-ta, Sb. statei po nelineinym operatornym uravneniyam i ikh prilozheniyam, no. 16, Voronezh, 1975, 62–65 | MR

[4] Sumin M. V., Svyaz spektrov derevev i ikh plotnost, Dep. v VINITI 25.12.84, No 8314-84, Voronezhskii gos. un-t, Voronezh, 1983, 15 pp.

[5] Kolmykov V. A., Subbotin V. F., Spektry grafov i kospektralnost, Dep. v VINITI 12.12.83, No 6708-83, Voronezhskii gos. un-t, Voronezh, 1983, 23 pp.

[6] Tsvetkovich D., Dub M., Zakhs Kh., Spektry grafov. Teoriya i primenenie, Naukova Dumka, Kiev, 1984 | MR

[7] Kolmykov V. A., Menshikh V. V., Subbotin V. F., Sumin M. V., Nekotorye svoistva atsiklicheskikh grafov i svyazannykh s nimi mnogochlenov, Dep. v VINITI 12.12.83, No 6707-83, Voronezhskii gos. un-t, Voronezh, 1983, 21 pp.

[8] Subbotin V. F., Sumin M. V., Issledovanie mnogochlenov, svyazannykh s predstavleniyami grafov, Dep. v VINITI 30.12.82, No 6480-82, Voronezhskii gos. un-t, Voronezh, 1982, 37 pp.

[9] Schwenk A. J., “Allmost all trees are cospectral”, New directions in Thae theory of graphs, ed. F. Harary, Academic press, New York, 1973, 275–307 | MR