Kovalevskaya exponents of systems with exponential interaction
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1459-1469 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Kovalevskaya exponents are calculated for a class of systems generalizing Toda chains: systems with exponential interaction. It is shown that the known cases of algebraic integrability have no direct analogues in the case of spaces with pseudo-Euclidean metrics because the full-parameter expansions of the general solution contain complex powers of the independent variable.
@article{SM_2000_191_10_a2,
     author = {K. V. Emel'yanov and A. V. Tsygvintsev},
     title = {Kovalevskaya exponents of systems with exponential interaction},
     journal = {Sbornik. Mathematics},
     pages = {1459--1469},
     year = {2000},
     volume = {191},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a2/}
}
TY  - JOUR
AU  - K. V. Emel'yanov
AU  - A. V. Tsygvintsev
TI  - Kovalevskaya exponents of systems with exponential interaction
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1459
EP  - 1469
VL  - 191
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a2/
LA  - en
ID  - SM_2000_191_10_a2
ER  - 
%0 Journal Article
%A K. V. Emel'yanov
%A A. V. Tsygvintsev
%T Kovalevskaya exponents of systems with exponential interaction
%J Sbornik. Mathematics
%D 2000
%P 1459-1469
%V 191
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a2/
%G en
%F SM_2000_191_10_a2
K. V. Emel'yanov; A. V. Tsygvintsev. Kovalevskaya exponents of systems with exponential interaction. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1459-1469. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a2/

[1] Kozlov V. V., Simmetrii, topologiya i rezonansy v gamiltonovoi mekhanike, Izd-vo UdGU, Izhevsk, 1995 | MR | Zbl

[2] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[3] Bogoyavlenskii O. I., Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR | Zbl

[4] Adler M., van Moerbeke P., “Kowalewski's asymptotic method, Kac-Moody Lie algebras and regularization”, Comm. Math. Phys., 83 (1982), 83–106 | DOI | MR | Zbl

[5] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 3, VINITI, M., 1985 | MR

[6] Kozlov V. V., Treschev D. V., “Chisla Kovalevskoi obobschennykh tsepochek Tody”, Matem. zametki, 46:5 (1989), 17–28 | MR

[7] Kovalevskaya S. V., “Zadacha o vraschenii tverdogo tela okolo nepodvizhnoi tochki”, Kovalevskaya S. V. Nauchnye raboty, Izd-vo AN SSSR, M., 1948, 153–220

[8] Kozlov V. V., Treschev D. V., “Polinomialnye integraly gamiltonovykh sistem s eksponentsialnym vzaimodeistviem”, Izv. AN SSSR. Ser. matem., 53:3 (1989), 537–556 | MR | Zbl

[9] Adler M., van Moerbeke P., “The Toda lattice, Dynkin diagrams, singularities and Abelian varietes”, Invent. Math., 103 (1991), 223–278 | DOI | MR | Zbl

[10] Yoshida H., “Necessary condition for the existence of algebraic first integrals”, Celestial Mech., 31 (1983), 363–399 | DOI | MR

[11] Kozlov V. V., “Tenzornye invarianty kvaziodnorodnykh sistem differentsialnykh uravnenii i asimptoticheskii metod Kovalevskoi–Lyapunova”, Matem. zametki, 51:2 (1992), 46–52 | MR | Zbl

[12] Kozlov V. V., Furta S. D., Asimptotiki reshenii silno nelineinykh sistem differentsialnykh uravnenii, Izd-vo MGU, M., 1996 | MR | Zbl

[13] Adler M., van Moerbeke P., “A systematic approach towards solving integrable systems”, Perspectives in Mathematics, Academic Press, New York, 1987

[14] Pavlov A. E., “The mixmaster cosmological model as a pseudo-Euclidean generalized Toda chain”, Regular and Chaotic Dynamics, 1996, no. 1, 111–118 | MR

[15] Yoshida H., “A criterion for the non-existence of an additional analytic integral in Hamiltonian systems with $n$ degrees of freedom”, Phys. Lett. A, 141:3–4 (1989), 108–112 | DOI | MR