Kovalevskaya exponents of systems with exponential interaction
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1459-1469
Voir la notice de l'article provenant de la source Math-Net.Ru
The Kovalevskaya exponents are calculated for a class of systems generalizing Toda chains: systems with exponential interaction. It is shown that the known cases of algebraic integrability have no direct analogues in the case of spaces with pseudo-Euclidean metrics because the full-parameter expansions of the general solution contain complex powers of the independent variable.
@article{SM_2000_191_10_a2,
author = {K. V. Emel'yanov and A. V. Tsygvintsev},
title = {Kovalevskaya exponents of systems with exponential interaction},
journal = {Sbornik. Mathematics},
pages = {1459--1469},
publisher = {mathdoc},
volume = {191},
number = {10},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a2/}
}
TY - JOUR AU - K. V. Emel'yanov AU - A. V. Tsygvintsev TI - Kovalevskaya exponents of systems with exponential interaction JO - Sbornik. Mathematics PY - 2000 SP - 1459 EP - 1469 VL - 191 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a2/ LA - en ID - SM_2000_191_10_a2 ER -
K. V. Emel'yanov; A. V. Tsygvintsev. Kovalevskaya exponents of systems with exponential interaction. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1459-1469. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a2/