Approximation of a~singularly perturbed elliptic problem of optimal control
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1421-1431

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of optimal control of solutions of an elliptic equation with a small parameter at higher derivatives is considered in a rectangle with two sides parallel to the characteristic of the limit equation. The limit problem is found and asymptotic estimates for solutions of a problem that approximates the original problem are obtained.
@article{SM_2000_191_10_a0,
     author = {A. R. Danilin},
     title = {Approximation of a~singularly perturbed elliptic problem of optimal control},
     journal = {Sbornik. Mathematics},
     pages = {1421--1431},
     publisher = {mathdoc},
     volume = {191},
     number = {10},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a0/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - Approximation of a~singularly perturbed elliptic problem of optimal control
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1421
EP  - 1431
VL  - 191
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a0/
LA  - en
ID  - SM_2000_191_10_a0
ER  - 
%0 Journal Article
%A A. R. Danilin
%T Approximation of a~singularly perturbed elliptic problem of optimal control
%J Sbornik. Mathematics
%D 2000
%P 1421-1431
%V 191
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a0/
%G en
%F SM_2000_191_10_a0
A. R. Danilin. Approximation of a~singularly perturbed elliptic problem of optimal control. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1421-1431. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a0/