Approximation of a singularly perturbed elliptic problem of optimal control
Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1421-1431 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A problem of optimal control of solutions of an elliptic equation with a small parameter at higher derivatives is considered in a rectangle with two sides parallel to the characteristic of the limit equation. The limit problem is found and asymptotic estimates for solutions of a problem that approximates the original problem are obtained.
@article{SM_2000_191_10_a0,
     author = {A. R. Danilin},
     title = {Approximation of a~singularly perturbed elliptic problem of optimal control},
     journal = {Sbornik. Mathematics},
     pages = {1421--1431},
     year = {2000},
     volume = {191},
     number = {10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2000_191_10_a0/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - Approximation of a singularly perturbed elliptic problem of optimal control
JO  - Sbornik. Mathematics
PY  - 2000
SP  - 1421
EP  - 1431
VL  - 191
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/SM_2000_191_10_a0/
LA  - en
ID  - SM_2000_191_10_a0
ER  - 
%0 Journal Article
%A A. R. Danilin
%T Approximation of a singularly perturbed elliptic problem of optimal control
%J Sbornik. Mathematics
%D 2000
%P 1421-1431
%V 191
%N 10
%U http://geodesic.mathdoc.fr/item/SM_2000_191_10_a0/
%G en
%F SM_2000_191_10_a0
A. R. Danilin. Approximation of a singularly perturbed elliptic problem of optimal control. Sbornik. Mathematics, Tome 191 (2000) no. 10, pp. 1421-1431. http://geodesic.mathdoc.fr/item/SM_2000_191_10_a0/

[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR

[2] Danilin A. R., “Asimptotika ogranichennykh upravlenii dlya singulyarnoi ellipticheskoi zadachi v oblasti s maloi polostyu”, Matem. sb., 189:11 (1998), 27–60 | MR | Zbl

[3] Kapustyan V. E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Ser. matematika, estestvoznanie, tekhnicheskie nauki, 1992, no. 2, 70–74 | MR

[4] Ilin A. M., Lelikova E. F., “Asimptotika reshenii nekotorykh ellipticheskikh uravnenii v neogranichennykh oblastyakh”, Matem. sb., 119 (161):3 (1982), 307–324 | MR | Zbl

[5] Lelikova E. F., “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravneniya $\varepsilon\Delta u-au_z=f$ v parallelepipede”, Differents. uravneniya, 14:9 (1978), 1638–1648 | MR | Zbl

[6] Kalyakin L. A., “Asimptotika resheniya sistemy dvukh lineinykh uravnenii MGD s singulyarnym vozmuscheniem. I: Standartnaya zadacha v ellipticheskom sloe”, Differents. uravneniya, 18:10 (1982), 1724–1738 | MR | Zbl

[7] Litvinov V. G., Optimizatsiya v ellipticheskikh granichnykh zadachakh s prilozheniyami k mekhanike, Nauka, M., 1987 | MR

[8] Banach S., Steinhaus H., “Sur le principle de la condensation de singularités”, Fund. Math., 9 (1927), 50–61 | Zbl

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[10] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950

[11] Ilin A. M., Soglasovanie asimtoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR