Almost principal bundles
Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1377-1400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The class $A$ of bundles with the following properties is investigated: each bundle in $A$ is the composition of a regular cover and a principal bundle (over the covering space) with Abelian structure group; the standard fibre $G$ of this decomposable bundle is a Lie group; the bundle has an atlas with multivalued transition functions taking values in the group $G$. The equivalence class of such an atlas will be called an almost principal bundle structure. The group of equivalence classes of almost principal bundles with a fixed base $B$ and a fixed structure group $G$ is computed, along with its subgroup of equivalence classes of principal $G$-bundles over $B$, and also the groups of equivalence classes of these bundles with respect to the morphisms of the category $C$ of decomposable bundles. A base and an invariant are found for an almost principal bundle that is not isomorphic to a principal bundle even in the category $C$. Applications are considered to the variational problem with fixed ends for multivalued functionals.
@article{SM_1999_190_9_a5,
     author = {E. I. Yakovlev},
     title = {Almost principal bundles},
     journal = {Sbornik. Mathematics},
     pages = {1377--1400},
     year = {1999},
     volume = {190},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a5/}
}
TY  - JOUR
AU  - E. I. Yakovlev
TI  - Almost principal bundles
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1377
EP  - 1400
VL  - 190
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_9_a5/
LA  - en
ID  - SM_1999_190_9_a5
ER  - 
%0 Journal Article
%A E. I. Yakovlev
%T Almost principal bundles
%J Sbornik. Mathematics
%D 1999
%P 1377-1400
%V 190
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1999_190_9_a5/
%G en
%F SM_1999_190_9_a5
E. I. Yakovlev. Almost principal bundles. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1377-1400. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a5/

[1] Kobayashi S., “Principal fibre bundles with the 1-dimensional toroidal group”, Tôhoky Math. J., 8 (1956), 29–45 | DOI | MR | Zbl

[2] Kodaira K., Spenser D. S., “Groups of complex line bundles over compact Kähler manifolds”, Proc. Nat. Acad. Aci. U.S.A., 39 (1953), 868–872 | DOI | MR | Zbl

[3] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[4] Novikov S. P., “Gamiltonov formalizm i mnogoznachnyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[5] Yakovlev E. I., “Geodezicheskoe modelirovanie i usloviya razreshimosti dvukhkontsevoi zadachi dlya mnogoznachnykh funktsionalov”, Funkts. analiz i ego prilozh., 30:1 (1996), 89–92 | MR | Zbl

[6] Yakovlev E. I., “O suschestvovanii reshenii dvukhtochechnykh kraevykh zadach dlya giroskopicheskikh sistem relyativistskogo tipa”, Algebra i analiz, 9:2 (1997), 256–271 | MR