@article{SM_1999_190_9_a4,
author = {\`E. \`E. Shnol' and E. V. Nikolaev},
title = {On the bifurcations of equilibria corresponding to double eigenvalues},
journal = {Sbornik. Mathematics},
pages = {1353--1376},
year = {1999},
volume = {190},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a4/}
}
È. È. Shnol'; E. V. Nikolaev. On the bifurcations of equilibria corresponding to double eigenvalues. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1353-1376. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a4/
[1] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR
[2] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 5, VINITI, M., 1986, 5–218 | MR
[3] Guckenheimer J., Holmes Ph., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer-Verlag, New York, 1986 | MR
[4] Kuznetsov Yu. A., Elements of applied bifurcation theory, Springer-Verlag, New York, 1995 | MR
[5] Golubitsky M., Stewart I., Schaeffer D., Singularities and groups in bifurcation theory, V. II, Springer-Verlag, New York, 1988 | MR | Zbl
[6] Field M., “Equivariant bifurcation theory and symmetry breaking”, J. Dynam. Differential Equations, 1:4 (1989), 369–421 | DOI | MR | Zbl
[7] Field M., Swift J. W., “Hopf bifurcation and the Hopf fibration”, Nonlinearity, 7 (1994), 385–402 | DOI | MR | Zbl
[8] Swift J., Barany E., “Chaos in the Hopf bifurcation with tetrahedral symmetry: convection in a rotating fluid with low Prandtl number”, European J. Mech. B Fluids., 10:2, suppl (1991), 99–104 | MR | Zbl
[9] Guckenheimer J., Worfolk P., “Instant chaos”, Nonlinearity, 5 (1992), 1211–1222 | DOI | MR | Zbl
[10] Swift J. W., “Hopf bifurcation with the symmetry of the square”, Nonlinearity, 1 (1988), 333–377 | DOI | MR | Zbl
[11] Van Gils S. A., Silber M., “On the uniqueness of invariant tori in $D_4\times S^1$ symmetric systems”, Nonlinearity, 8:4 (1995), 615–628 | DOI | MR | Zbl
[12] Ruelle D., “Bifurcations in the presence of a symmetry group”, Arch. Rational Mech. Anal., 51 (1973), 136–152 | DOI | MR | Zbl
[13] Shnol E. E., Nikolaev E. V., O bifurkatsiyakh polozhenii ravnovesiya v sistemakh differentsialnykh uravnenii, obladayuschikh konechnoi gruppoi simmetrii, Preprint IMPB RAN, ONTI PNTs, Puschino, 1997
[14] Werner B., “Eigenvalue problems with the symmetry of a group and bifurcations”, Continuation and bifurcations: numerical techniques and applications, eds. D. Roose et al., Kluwer Acad. Publ., Dordrecht, 1990, 71–88 | MR
[15] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Springer-Verlag, Berlin, 1977 | MR
[16] Kuznetsov Yu. A., Bifurkatsiya Andronova–Khopfa v chetyrekhmernoi sisteme s krugovoi simmetriei, Preprint NIVTs AN SSSR, ONTI NTsBI, Puschino, 1984
[17] Morshneva I. V., Yudovich V. I., “Ob otvetvlenii tsiklov ot ravnovesii inversionno- i vraschatelno-simmetrichnykh dinamicheskikh sistem”, Sib. matem. zhurn., 26:1 (1985), 124–133 | MR | Zbl
[18] Shafarevich I. R., Osnovnye ponyatiya algebry, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 11, VINITI, M., 1986 | MR
[19] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, nerelyativistskaya teoriya, Nauka, M., 1989