On the bifurcations of equilibria corresponding to double eigenvalues
Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1353-1376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of ordinary differential equations having a finite symmetry group are considered. One-parameter local bifurcations of symmetric equilibria corresponding to a double pair of purely imaginary eigenvalues are studied. It is shown that in one case a two-dimensional torus is generated from the equilibrium. The torus contains limit cycles; their number does not depend on the values of the parameter. The trajectories of the system that do not leave a certain fixed domain may only tend to the equilibrium under study or to the 2-dimensional torus or to one of two (disjoint) limit cycles. In all the other cases an invariant surface is generated from the equilibrium which is diffeomorphic to the three-dimensional sphere. The behaviour of the trajectories on this surface depends on the symmetry group and is not studied in this paper. In the appendix we provide information on codimension 1 bifurcations corresponding to double zero eigenvalues.
@article{SM_1999_190_9_a4,
     author = {\`E. \`E. Shnol' and E. V. Nikolaev},
     title = {On the bifurcations of equilibria corresponding to double eigenvalues},
     journal = {Sbornik. Mathematics},
     pages = {1353--1376},
     year = {1999},
     volume = {190},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a4/}
}
TY  - JOUR
AU  - È. È. Shnol'
AU  - E. V. Nikolaev
TI  - On the bifurcations of equilibria corresponding to double eigenvalues
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1353
EP  - 1376
VL  - 190
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_9_a4/
LA  - en
ID  - SM_1999_190_9_a4
ER  - 
%0 Journal Article
%A È. È. Shnol'
%A E. V. Nikolaev
%T On the bifurcations of equilibria corresponding to double eigenvalues
%J Sbornik. Mathematics
%D 1999
%P 1353-1376
%V 190
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1999_190_9_a4/
%G en
%F SM_1999_190_9_a4
È. È. Shnol'; E. V. Nikolaev. On the bifurcations of equilibria corresponding to double eigenvalues. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1353-1376. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a4/

[1] Arnold V. I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamicheskie sistemy, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 5, VINITI, M., 1986, 5–218 | MR

[3] Guckenheimer J., Holmes Ph., Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer-Verlag, New York, 1986 | MR

[4] Kuznetsov Yu. A., Elements of applied bifurcation theory, Springer-Verlag, New York, 1995 | MR

[5] Golubitsky M., Stewart I., Schaeffer D., Singularities and groups in bifurcation theory, V. II, Springer-Verlag, New York, 1988 | MR | Zbl

[6] Field M., “Equivariant bifurcation theory and symmetry breaking”, J. Dynam. Differential Equations, 1:4 (1989), 369–421 | DOI | MR | Zbl

[7] Field M., Swift J. W., “Hopf bifurcation and the Hopf fibration”, Nonlinearity, 7 (1994), 385–402 | DOI | MR | Zbl

[8] Swift J., Barany E., “Chaos in the Hopf bifurcation with tetrahedral symmetry: convection in a rotating fluid with low Prandtl number”, European J. Mech. B Fluids., 10:2, suppl (1991), 99–104 | MR | Zbl

[9] Guckenheimer J., Worfolk P., “Instant chaos”, Nonlinearity, 5 (1992), 1211–1222 | DOI | MR | Zbl

[10] Swift J. W., “Hopf bifurcation with the symmetry of the square”, Nonlinearity, 1 (1988), 333–377 | DOI | MR | Zbl

[11] Van Gils S. A., Silber M., “On the uniqueness of invariant tori in $D_4\times S^1$ symmetric systems”, Nonlinearity, 8:4 (1995), 615–628 | DOI | MR | Zbl

[12] Ruelle D., “Bifurcations in the presence of a symmetry group”, Arch. Rational Mech. Anal., 51 (1973), 136–152 | DOI | MR | Zbl

[13] Shnol E. E., Nikolaev E. V., O bifurkatsiyakh polozhenii ravnovesiya v sistemakh differentsialnykh uravnenii, obladayuschikh konechnoi gruppoi simmetrii, Preprint IMPB RAN, ONTI PNTs, Puschino, 1997

[14] Werner B., “Eigenvalue problems with the symmetry of a group and bifurcations”, Continuation and bifurcations: numerical techniques and applications, eds. D. Roose et al., Kluwer Acad. Publ., Dordrecht, 1990, 71–88 | MR

[15] Hirsch M. W., Pugh C. C., Shub M., Invariant manifolds, Springer-Verlag, Berlin, 1977 | MR

[16] Kuznetsov Yu. A., Bifurkatsiya Andronova–Khopfa v chetyrekhmernoi sisteme s krugovoi simmetriei, Preprint NIVTs AN SSSR, ONTI NTsBI, Puschino, 1984

[17] Morshneva I. V., Yudovich V. I., “Ob otvetvlenii tsiklov ot ravnovesii inversionno- i vraschatelno-simmetrichnykh dinamicheskikh sistem”, Sib. matem. zhurn., 26:1 (1985), 124–133 | MR | Zbl

[18] Shafarevich I. R., Osnovnye ponyatiya algebry, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 11, VINITI, M., 1986 | MR

[19] Landau L. D., Lifshits E. M., Kvantovaya mekhanika, nerelyativistskaya teoriya, Nauka, M., 1989