Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1325-1352
Voir la notice de l'article provenant de la source Math-Net.Ru
A non-linear initial-boundary-value problem for a hyperbolic equation with dissipation is considered in a bounded domain $\Omega$
$$
u^\varepsilon _{tt}+\delta u^\varepsilon _t
-\operatorname {div}\bigl (a^\varepsilon (x)\nabla u^\varepsilon\bigr )
+f(u^\varepsilon)=h^\varepsilon (x),
$$
where $\delta>0$ and the coefficient $a^\varepsilon (x)$ is of order $\varepsilon ^{3+\gamma}$ $(0\leqslant \gamma1)$ on the union of spherical annuli of thickness $d_\varepsilon=d\varepsilon^{2+\gamma}$. The annuli are periodically, with period $\varepsilon$, distributed in a bounded domain $\Omega$. Outside the union of the annuli $a^\varepsilon (x)\equiv 1$. The asymptotic behaviour of the solutions and the global attractor of the problem are studied as $\varepsilon \to 0$. It is shown that the homogenization of the problem on each finite time interval leads to a system consisting of a non-linear hyperbolic equation and an ordinary second-order differential equation (with respect to $t$). It is also shown that the global attractor of the initial problem approaches in a certain sense a weak global attractor of the homogenized problem.
@article{SM_1999_190_9_a3,
author = {L. S. Pankratov and I. D. Chueshov},
title = {Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients},
journal = {Sbornik. Mathematics},
pages = {1325--1352},
publisher = {mathdoc},
volume = {190},
number = {9},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/}
}
TY - JOUR AU - L. S. Pankratov AU - I. D. Chueshov TI - Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients JO - Sbornik. Mathematics PY - 1999 SP - 1325 EP - 1352 VL - 190 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/ LA - en ID - SM_1999_190_9_a3 ER -
%0 Journal Article %A L. S. Pankratov %A I. D. Chueshov %T Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients %J Sbornik. Mathematics %D 1999 %P 1325-1352 %V 190 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/ %G en %F SM_1999_190_9_a3
L. S. Pankratov; I. D. Chueshov. Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1325-1352. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/