Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1325-1352 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A non-linear initial-boundary-value problem for a hyperbolic equation with dissipation is considered in a bounded domain $\Omega$ $$ u^\varepsilon _{tt}+\delta u^\varepsilon _t -\operatorname {div}\bigl (a^\varepsilon (x)\nabla u^\varepsilon\bigr ) +f(u^\varepsilon)=h^\varepsilon (x), $$ where $\delta>0$ and the coefficient $a^\varepsilon (x)$ is of order $\varepsilon ^{3+\gamma}$ $(0\leqslant \gamma<1)$ on the union of spherical annuli of thickness $d_\varepsilon=d\varepsilon^{2+\gamma}$. The annuli are periodically, with period $\varepsilon$, distributed in a bounded domain $\Omega$. Outside the union of the annuli $a^\varepsilon (x)\equiv 1$. The asymptotic behaviour of the solutions and the global attractor of the problem are studied as $\varepsilon \to 0$. It is shown that the homogenization of the problem on each finite time interval leads to a system consisting of a non-linear hyperbolic equation and an ordinary second-order differential equation (with respect to $t$). It is also shown that the global attractor of the initial problem approaches in a certain sense a weak global attractor of the homogenized problem.
@article{SM_1999_190_9_a3,
     author = {L. S. Pankratov and I. D. Chueshov},
     title = {Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1325--1352},
     year = {1999},
     volume = {190},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/}
}
TY  - JOUR
AU  - L. S. Pankratov
AU  - I. D. Chueshov
TI  - Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1325
EP  - 1352
VL  - 190
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/
LA  - en
ID  - SM_1999_190_9_a3
ER  - 
%0 Journal Article
%A L. S. Pankratov
%A I. D. Chueshov
%T Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
%J Sbornik. Mathematics
%D 1999
%P 1325-1352
%V 190
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/
%G en
%F SM_1999_190_9_a3
L. S. Pankratov; I. D. Chueshov. Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1325-1352. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/

[1] Sanches-Palensiya E., Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[2] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[3] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[4] Chueshov I. D., “Globalnye attraktory v nelineinykh zadachakh matematicheskoi fiziki”, UMN, 48:3 (1993), 135–162 | MR | Zbl

[5] Temam R., Infinite-dimensional systems in mechanics and physics, Springer-Verlag, New York, 1988 | MR | Zbl

[6] Boutet de Monvel L., Chueshov I. D., Khruslov E. Ya., “Homogenization of attractors for semilinear parabolic equations on manifolds with complicated microstructure”, Ann. Mat. Pura Appl. (4), 162 (1997), 297–322 | DOI | MR

[7] Kapitanskii L. V., Kostin I. N., “Attraktory nelineinykh evolyutsionnykh uravnenii i ikh approksimatsii”, Algebra i analiz, 2:1 (1990), 114–140 | MR

[8] Bourgeat A., Pankratov L. S., “Homogenization of semilinear parabolic equations in domains with spherical traps”, Appl. Anal., 64:3–4 (1997), 303–317 | DOI | MR | Zbl

[9] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, North-Holland, Amsterdam, 1978 | MR

[10] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[11] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[12] Boutet de Monvel L., Khruslov E. Ya., “Homogenization on Riemannian manifolds”, Proc. of the second workshop on composite media and homogenization theory, World Scientific, Singapore, 1995 | Zbl

[13] Khruslov E. Ya., “Homogenized models of strongly inhomogeneous media”, International congress of mathematicians, V. 2 (August 3–11, 1994, Zürich, Switzerland), Birkhäuser, Basel, 1995, 1270–1278 | MR | Zbl

[14] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[15] Ghidaglia J. M., Temam R., “Regularity of the solutions of second order evolution equations and their attractors”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 14 (1987), 485–511 | MR | Zbl