Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1325-1352

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-linear initial-boundary-value problem for a hyperbolic equation with dissipation is considered in a bounded domain $\Omega$ $$ u^\varepsilon _{tt}+\delta u^\varepsilon _t -\operatorname {div}\bigl (a^\varepsilon (x)\nabla u^\varepsilon\bigr ) +f(u^\varepsilon)=h^\varepsilon (x), $$ where $\delta>0$ and the coefficient $a^\varepsilon (x)$ is of order $\varepsilon ^{3+\gamma}$ $(0\leqslant \gamma1)$ on the union of spherical annuli of thickness $d_\varepsilon=d\varepsilon^{2+\gamma}$. The annuli are periodically, with period $\varepsilon$, distributed in a bounded domain $\Omega$. Outside the union of the annuli $a^\varepsilon (x)\equiv 1$. The asymptotic behaviour of the solutions and the global attractor of the problem are studied as $\varepsilon \to 0$. It is shown that the homogenization of the problem on each finite time interval leads to a system consisting of a non-linear hyperbolic equation and an ordinary second-order differential equation (with respect to $t$). It is also shown that the global attractor of the initial problem approaches in a certain sense a weak global attractor of the homogenized problem.
@article{SM_1999_190_9_a3,
     author = {L. S. Pankratov and I. D. Chueshov},
     title = {Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients},
     journal = {Sbornik. Mathematics},
     pages = {1325--1352},
     publisher = {mathdoc},
     volume = {190},
     number = {9},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/}
}
TY  - JOUR
AU  - L. S. Pankratov
AU  - I. D. Chueshov
TI  - Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1325
EP  - 1352
VL  - 190
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/
LA  - en
ID  - SM_1999_190_9_a3
ER  - 
%0 Journal Article
%A L. S. Pankratov
%A I. D. Chueshov
%T Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients
%J Sbornik. Mathematics
%D 1999
%P 1325-1352
%V 190
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/
%G en
%F SM_1999_190_9_a3
L. S. Pankratov; I. D. Chueshov. Homogenization of attractors of non-linear hyperbolic equations with asymptotically degenerate coefficients. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1325-1352. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a3/