Classical solutions of quasielliptic equations
Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1247-1265 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Fundamental solutions of quasielliptic equations are constructed; this allows the author to develop a relevant theory of volume potentials, establish estimates for the Holder norms of solutions of equations with constant coefficients, and extend them after that to equations with variable coefficients. As a result, sharp Schauder-type interior estimates are obtained, of which the well-known classical results for elliptic and parabolic equations are special cases.
@article{SM_1999_190_9_a1,
     author = {V. S. Belonosov},
     title = {Classical solutions of quasielliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {1247--1265},
     year = {1999},
     volume = {190},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a1/}
}
TY  - JOUR
AU  - V. S. Belonosov
TI  - Classical solutions of quasielliptic equations
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1247
EP  - 1265
VL  - 190
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_9_a1/
LA  - en
ID  - SM_1999_190_9_a1
ER  - 
%0 Journal Article
%A V. S. Belonosov
%T Classical solutions of quasielliptic equations
%J Sbornik. Mathematics
%D 1999
%P 1247-1265
%V 190
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1999_190_9_a1/
%G en
%F SM_1999_190_9_a1
V. S. Belonosov. Classical solutions of quasielliptic equations. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1247-1265. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a1/

[1] Volevich L. R., “Ob odnom klasse gipoellipticheskikh sistem”, Dokl. AN SSSR, 134:6 (1960), 1275–1278 | Zbl

[2] Volevich L. R., “Lokalnye svoistva reshenii kvaziellipticheskikh sistem”, Matem. sb., 59 ( dop) (1962), 3–52 | MR | Zbl

[3] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I”, Comm. Pure Appl. Math., 12 (1959), 623–727 | DOI | MR | Zbl

[4] Solonnikov V. A., “O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida”, Tr. MIAN, 83, Nauka, M., 1965, 3–163 | MR

[5] Belonosov V. S., “Vnutrennie otsenki reshenii kvaziparabolicheskikh sistem”, Sib. matem. zhurn., 37:1 (1996), 20–35 | MR | Zbl

[6] Hörmander L., The analysis of linear partial differential operators, V. I, II, Springer-Verlag, Berlin, 1983 | MR

[7] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[8] Giusti E., “Equazioni quasi ellitiche e spazi ${\mathcal L}^{p,\theta}(\Omega,\delta)$, I”, Ann. Mat. Pura Appl. (4), 75 (1967), 313–353 | DOI | MR | Zbl

[9] Uspenskii S. V., “O differentsialnykh svoistvakh reshenii odnogo klassa psevdodifferentsialnykh uravnenii na beskonechnosti”, Sib. matem. zhurn., 13:3 (1972), 665–678 | MR | Zbl

[10] Eidelman S. D., Parabolicheskie sistemy, Nauka, M., 1964 | MR | Zbl

[11] Filatov P. S., “O lokalnykh svoistvakh reshenii uravnenii kvaziellipticheskogo tipa”, Kraevye zadachi dlya uravnenii s chastnymi proizvodnymi, In-t matematiki SO AN SSSR, Novosibirsk, 1986, 110–126 | MR

[12] Miranda C., Equazioni alle derivate parziali di tipo elliptico, Springer-Verlag, Berlin, 1955 | MR