@article{SM_1999_190_9_a0,
author = {D. E. Aleksandrova and V. I. Bogachev and A. Yu. Pilipenko},
title = {On the convergence of induced measures in variation},
journal = {Sbornik. Mathematics},
pages = {1229--1245},
year = {1999},
volume = {190},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/}
}
D. E. Aleksandrova; V. I. Bogachev; A. Yu. Pilipenko. On the convergence of induced measures in variation. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1229-1245. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/
[1] Davydov Yu. A., Lifshits M. A., Smorodina N. V., Lokalnye svoistva raspredelenii stokhasticheskikh funktsionalov, Fizmatlit, M., 1995 | MR | Zbl
[2] Davydov Yu. A., “O skhodimosti po variatsii obrazov odnomernykh mer”, Problemy teorii veroyatnostnykh raspredelenii, Zap. nauchn. semin. POMI, 194, no. XII, POMI, S.-Peterburg, 1992, 48–58 | MR
[3] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl
[4] Reshetnyak Yu. G., “Prostranstvennye otobrazheniya s ogranichennym iskazheniem”, Sib. matem. zhurn., 8:3 (1967), 629–658 | MR
[5] Ziemer W., Weakly differentiable functions, Springer-Verlag, New York, 1989 | MR
[6] Goldshtein V. M., Reshetnyak Yu. G., Kvazikonformnye otobrazheniya i prostranstva Soboleva, Nauka, M., 1983 | MR
[7] Ellis H. W., “Darboux properties and applications to non-convergent integrals”, Canad. J. Math., 3 (1951), 471–485 | MR | Zbl
[8] Bogachev V. I., Gaussovskie mery, Fizmatlit, M., 1997 | MR | Zbl
[9] Bojarski B., Iwaniec T., “Analytical foundations of the theory of quasiconformal mappings in $\mathbb R^n$”, Ann. Acad. Sci. Fenn. Ser. A I Math., 8 (1983), 257–324 | MR | Zbl
[10] Ponomarev S. P., “Ob $N$-svoistve gomeomorfizmov klassa $W^1_p$”, Sib. matem. zhurn., 28:2 (1987), 140–148 | MR | Zbl
[11] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, M., 1982 | MR
[12] Reshetnyak Yu. G., “$N$-svoistvo dlya prostranstvennykh otobrazhenii klassa $W^1_{n,\text{{\rm loc}}}$”, Sib. matem. zhurn., 28:5 (1987), 149–153 | MR | Zbl
[13] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR
[14] Ponomarev S. P., “Submersii i proobrazy mnozhestv mery nul”, Sib. matem. zhurn., 28:1 (1987), 199–210 | MR | Zbl
[15] Rado T., Reichelderfer P. V., Continuous transformations in analysis, Springer-Verlag, Berlin, 1955 | MR | Zbl
[16] Evans L. C., Gariepy R. F., Measure theory and fine properties of functions, CRC Press, New York, 1992 | MR | Zbl
[17] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978 | MR | Zbl
[18] Khenneken P. L., Tortra A., Teoriya veroyatnostei i nekotorye ee prilozheniya, Nauka, M., 1974 | MR
[19] Bogachev V. I., “Differentiable measures and the Malliavin calculus”, J. Math. Sci., 87:5 (1997), 3577–3731 | DOI | MR | Zbl
[20] Bouleau N., Hirsch F., Dirichlet forms and analysis on Wiener space, Walter de Gruyter, Berlin, 1991 | MR | Zbl
[21] Nualart D., The Malliavin calculus and related topics, Springer-Verlag, Berlin, 1995 | MR
[22] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR
[23] Bogachev V. I., Maier-Volf E., “Potoki, porozhdennye vektornymi polyami sobolevskogo tipa, i sootvetstvuyuschie preobrazovaniya veroyatnostnykh mer”, Dokl. RAN, 358:4 (1998), 442–446 | MR | Zbl
[24] Georgi Kh.-O., Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR
[25] Malliavin P., Stochastic analysis, Springer-Verlag, Berlin, 1997 | MR | Zbl
[26] Ren J., Watanabe S., “A convergence theorem for probability densities and conditional expectations of Wiener functionals”, Dirichlet forms and stochastic processes (Beijing, 1993), Walter de Gruyter, Berlin, 1995, 335–344 | MR
[27] Alexandrova D., Bogachev V., Pilipenko A., “On the convergence in variation for the images of measures under differentiable mappings”, C. R. Acad. Sci. Paris Sér. I Math., 328:11 (1999), 1055–1060 | MR | Zbl