On the convergence of induced measures in variation
Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1229-1245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $F_j$, $F\colon\mathbb R^n\to\mathbb R^n$ be measurable maps such that $F_j\to F$ and $\partial _{x_i}F_j\to\partial _{x_i}F$ in measure on a measurable set $E$. Conditions ensuring that the images of Lebesgue measure $\lambda \big|_E$ on $E$ under the maps $F_j$ converge in variation to the image of $\lambda \big |_E$ under $F$ are presented. For example, one sufficient condition is the convergence of the $F_j$ to $F$ in a Sobolev space $W^{p,1}(\mathbb R^n,\mathbb R^n)$ with $p\geqslant n$ and the inclusion $E\subset \{\det DF\ne 0\}$. Similar results are obtained for maps between Riemannian manifolds and maps from infinite dimensional spaces.
@article{SM_1999_190_9_a0,
     author = {D. E. Aleksandrova and V. I. Bogachev and A. Yu. Pilipenko},
     title = {On the convergence of induced measures in variation},
     journal = {Sbornik. Mathematics},
     pages = {1229--1245},
     year = {1999},
     volume = {190},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/}
}
TY  - JOUR
AU  - D. E. Aleksandrova
AU  - V. I. Bogachev
AU  - A. Yu. Pilipenko
TI  - On the convergence of induced measures in variation
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1229
EP  - 1245
VL  - 190
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/
LA  - en
ID  - SM_1999_190_9_a0
ER  - 
%0 Journal Article
%A D. E. Aleksandrova
%A V. I. Bogachev
%A A. Yu. Pilipenko
%T On the convergence of induced measures in variation
%J Sbornik. Mathematics
%D 1999
%P 1229-1245
%V 190
%N 9
%U http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/
%G en
%F SM_1999_190_9_a0
D. E. Aleksandrova; V. I. Bogachev; A. Yu. Pilipenko. On the convergence of induced measures in variation. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1229-1245. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/

[1] Davydov Yu. A., Lifshits M. A., Smorodina N. V., Lokalnye svoistva raspredelenii stokhasticheskikh funktsionalov, Fizmatlit, M., 1995 | MR | Zbl

[2] Davydov Yu. A., “O skhodimosti po variatsii obrazov odnomernykh mer”, Problemy teorii veroyatnostnykh raspredelenii, Zap. nauchn. semin. POMI, 194, no. XII, POMI, S.-Peterburg, 1992, 48–58 | MR

[3] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[4] Reshetnyak Yu. G., “Prostranstvennye otobrazheniya s ogranichennym iskazheniem”, Sib. matem. zhurn., 8:3 (1967), 629–658 | MR

[5] Ziemer W., Weakly differentiable functions, Springer-Verlag, New York, 1989 | MR

[6] Goldshtein V. M., Reshetnyak Yu. G., Kvazikonformnye otobrazheniya i prostranstva Soboleva, Nauka, M., 1983 | MR

[7] Ellis H. W., “Darboux properties and applications to non-convergent integrals”, Canad. J. Math., 3 (1951), 471–485 | MR | Zbl

[8] Bogachev V. I., Gaussovskie mery, Fizmatlit, M., 1997 | MR | Zbl

[9] Bojarski B., Iwaniec T., “Analytical foundations of the theory of quasiconformal mappings in $\mathbb R^n$”, Ann. Acad. Sci. Fenn. Ser. A I Math., 8 (1983), 257–324 | MR | Zbl

[10] Ponomarev S. P., “Ob $N$-svoistve gomeomorfizmov klassa $W^1_p$”, Sib. matem. zhurn., 28:2 (1987), 140–148 | MR | Zbl

[11] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, M., 1982 | MR

[12] Reshetnyak Yu. G., “$N$-svoistvo dlya prostranstvennykh otobrazhenii klassa $W^1_{n,\text{{\rm loc}}}$”, Sib. matem. zhurn., 28:5 (1987), 149–153 | MR | Zbl

[13] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR

[14] Ponomarev S. P., “Submersii i proobrazy mnozhestv mery nul”, Sib. matem. zhurn., 28:1 (1987), 199–210 | MR | Zbl

[15] Rado T., Reichelderfer P. V., Continuous transformations in analysis, Springer-Verlag, Berlin, 1955 | MR | Zbl

[16] Evans L. C., Gariepy R. F., Measure theory and fine properties of functions, CRC Press, New York, 1992 | MR | Zbl

[17] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978 | MR | Zbl

[18] Khenneken P. L., Tortra A., Teoriya veroyatnostei i nekotorye ee prilozheniya, Nauka, M., 1974 | MR

[19] Bogachev V. I., “Differentiable measures and the Malliavin calculus”, J. Math. Sci., 87:5 (1997), 3577–3731 | DOI | MR | Zbl

[20] Bouleau N., Hirsch F., Dirichlet forms and analysis on Wiener space, Walter de Gruyter, Berlin, 1991 | MR | Zbl

[21] Nualart D., The Malliavin calculus and related topics, Springer-Verlag, Berlin, 1995 | MR

[22] Daletskii Yu. L., Fomin S. V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983 | MR

[23] Bogachev V. I., Maier-Volf E., “Potoki, porozhdennye vektornymi polyami sobolevskogo tipa, i sootvetstvuyuschie preobrazovaniya veroyatnostnykh mer”, Dokl. RAN, 358:4 (1998), 442–446 | MR | Zbl

[24] Georgi Kh.-O., Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR

[25] Malliavin P., Stochastic analysis, Springer-Verlag, Berlin, 1997 | MR | Zbl

[26] Ren J., Watanabe S., “A convergence theorem for probability densities and conditional expectations of Wiener functionals”, Dirichlet forms and stochastic processes (Beijing, 1993), Walter de Gruyter, Berlin, 1995, 335–344 | MR

[27] Alexandrova D., Bogachev V., Pilipenko A., “On the convergence in variation for the images of measures under differentiable mappings”, C. R. Acad. Sci. Paris Sér. I Math., 328:11 (1999), 1055–1060 | MR | Zbl