On the convergence of induced measures in variation
Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1229-1245

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $F_j$, $F\colon\mathbb R^n\to\mathbb R^n$ be measurable maps such that $F_j\to F$ and $\partial _{x_i}F_j\to\partial _{x_i}F$ in measure on a measurable set $E$. Conditions ensuring that the images of Lebesgue measure $\lambda \big|_E$ on $E$ under the maps $F_j$ converge in variation to the image of $\lambda \big |_E$ under $F$ are presented. For example, one sufficient condition is the convergence of the $F_j$ to $F$ in a Sobolev space $W^{p,1}(\mathbb R^n,\mathbb R^n)$ with $p\geqslant n$ and the inclusion $E\subset \{\det DF\ne 0\}$. Similar results are obtained for maps between Riemannian manifolds and maps from infinite dimensional spaces.
@article{SM_1999_190_9_a0,
     author = {D. E. Aleksandrova and V. I. Bogachev and A. Yu. Pilipenko},
     title = {On the convergence of induced measures in variation},
     journal = {Sbornik. Mathematics},
     pages = {1229--1245},
     publisher = {mathdoc},
     volume = {190},
     number = {9},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/}
}
TY  - JOUR
AU  - D. E. Aleksandrova
AU  - V. I. Bogachev
AU  - A. Yu. Pilipenko
TI  - On the convergence of induced measures in variation
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1229
EP  - 1245
VL  - 190
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/
LA  - en
ID  - SM_1999_190_9_a0
ER  - 
%0 Journal Article
%A D. E. Aleksandrova
%A V. I. Bogachev
%A A. Yu. Pilipenko
%T On the convergence of induced measures in variation
%J Sbornik. Mathematics
%D 1999
%P 1229-1245
%V 190
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/
%G en
%F SM_1999_190_9_a0
D. E. Aleksandrova; V. I. Bogachev; A. Yu. Pilipenko. On the convergence of induced measures in variation. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1229-1245. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/