On the convergence of induced measures in variation
Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1229-1245
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $F_j$, $F\colon\mathbb R^n\to\mathbb R^n$ be measurable maps such that $F_j\to F$ and $\partial _{x_i}F_j\to\partial _{x_i}F$ in measure on a measurable set $E$. Conditions ensuring that the images of Lebesgue measure $\lambda \big|_E$ on $E$ under the maps $F_j$ converge in variation to the image of $\lambda \big |_E$ under $F$ are presented. For example, one sufficient condition is the convergence of the $F_j$ to $F$ in a Sobolev space $W^{p,1}(\mathbb R^n,\mathbb R^n)$ with $p\geqslant n$ and the inclusion $E\subset \{\det DF\ne 0\}$. Similar results are obtained for maps between Riemannian manifolds and maps from infinite dimensional spaces.
@article{SM_1999_190_9_a0,
author = {D. E. Aleksandrova and V. I. Bogachev and A. Yu. Pilipenko},
title = {On the convergence of induced measures in variation},
journal = {Sbornik. Mathematics},
pages = {1229--1245},
publisher = {mathdoc},
volume = {190},
number = {9},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/}
}
TY - JOUR AU - D. E. Aleksandrova AU - V. I. Bogachev AU - A. Yu. Pilipenko TI - On the convergence of induced measures in variation JO - Sbornik. Mathematics PY - 1999 SP - 1229 EP - 1245 VL - 190 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/ LA - en ID - SM_1999_190_9_a0 ER -
D. E. Aleksandrova; V. I. Bogachev; A. Yu. Pilipenko. On the convergence of induced measures in variation. Sbornik. Mathematics, Tome 190 (1999) no. 9, pp. 1229-1245. http://geodesic.mathdoc.fr/item/SM_1999_190_9_a0/