Elliptic operators in even subspaces
Sbornik. Mathematics, Tome 190 (1999) no. 8, pp. 1195-1228

Voir la notice de l'article provenant de la source Math-Net.Ru

An elliptic theory is constructed for operators acting in subspaces defined in terms of even pseudodifferential projections. Index formulae are obtained for operators on compact manifolds without boundary and for general boundary-value problems. A connection with Gilkey's theory of $\eta$-invariants is established.
@article{SM_1999_190_8_a4,
     author = {A. Yu. Savin and B. Yu. Sternin},
     title = {Elliptic operators in even subspaces},
     journal = {Sbornik. Mathematics},
     pages = {1195--1228},
     publisher = {mathdoc},
     volume = {190},
     number = {8},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_8_a4/}
}
TY  - JOUR
AU  - A. Yu. Savin
AU  - B. Yu. Sternin
TI  - Elliptic operators in even subspaces
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1195
EP  - 1228
VL  - 190
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_8_a4/
LA  - en
ID  - SM_1999_190_8_a4
ER  - 
%0 Journal Article
%A A. Yu. Savin
%A B. Yu. Sternin
%T Elliptic operators in even subspaces
%J Sbornik. Mathematics
%D 1999
%P 1195-1228
%V 190
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_8_a4/
%G en
%F SM_1999_190_8_a4
A. Yu. Savin; B. Yu. Sternin. Elliptic operators in even subspaces. Sbornik. Mathematics, Tome 190 (1999) no. 8, pp. 1195-1228. http://geodesic.mathdoc.fr/item/SM_1999_190_8_a4/