On the growth of rank for subgroups of finitely generated groups
Sbornik. Mathematics, Tome 190 (1999) no. 8, pp. 1151-1172 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In [1] and [2] the functions of rank growth were independently introduced and investigated for subgroups of a finitely generated free group. In the present paper the concept of growth of rank is extended to subgroups of an arbitrary finitely generated group $G$, and the dependence of the asymptotic behaviour of the above functions on the choice of a finite generating set in $G$ is studied. For a broad class of groups (which includes, in particular, the free polynilpotent groups) estimates for the growth of rank for subgroups are obtained that generalize the wellknown Baumslag–Eidel'kind result on finitely generated normal subgroups. Some problems related to the realization of arbitrary functions as functions of rank growth for subgroups of soluble groups are treated.
@article{SM_1999_190_8_a2,
     author = {D. V. Osin},
     title = {On the growth of rank for subgroups of finitely generated groups},
     journal = {Sbornik. Mathematics},
     pages = {1151--1172},
     year = {1999},
     volume = {190},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_8_a2/}
}
TY  - JOUR
AU  - D. V. Osin
TI  - On the growth of rank for subgroups of finitely generated groups
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1151
EP  - 1172
VL  - 190
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_8_a2/
LA  - en
ID  - SM_1999_190_8_a2
ER  - 
%0 Journal Article
%A D. V. Osin
%T On the growth of rank for subgroups of finitely generated groups
%J Sbornik. Mathematics
%D 1999
%P 1151-1172
%V 190
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1999_190_8_a2/
%G en
%F SM_1999_190_8_a2
D. V. Osin. On the growth of rank for subgroups of finitely generated groups. Sbornik. Mathematics, Tome 190 (1999) no. 8, pp. 1151-1172. http://geodesic.mathdoc.fr/item/SM_1999_190_8_a2/

[1] Osin D. V., “On the generating set's growth functions for subgroups of free groups”, Internat. J. Algebra Comput., 9:1 (1999), 41–50 | DOI | MR | Zbl

[2] Rosenmann A., When Schreier transversals grow wild, Preprint, 1997 | MR | Zbl

[3] Howson A. G., “On the intersection of the finitely generated free groups”, J. London Math. Soc., 29 (1954), 428–434 | DOI | MR | Zbl

[4] Eidelkind D. I., “O konechno porozhdennykh normalnykh delitelyakh polinilpotentnykh grupp”, Sib. matem. zhurn., 9:1 (1968), 236–239 | MR | Zbl

[5] Baumslag G., “Some theorems on the free groups of certain product varieties”, J. Combin. Theory, 2 (1967), 77–99 | DOI | MR | Zbl

[6] Ol'shanskii A. Yu., “Distortion functions for subgroups”, Geometric group theory down under (Canberra, Australia, 1996), Walter de Gruyter, 1999, 281–291 | MR

[7] Kholl F., “Nilpotentnye gruppy”, Matematika. Sb. per., 12:1 (1968), 3–36 | MR

[8] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[9] Shmelkin A. L., “Spleteniya i mnogoobraziya grupp”, Izv. AN SSSR. Ser. matem., 29:1 (1965), 149–170 | MR | Zbl

[10] Wolf J. A., “Growth of finitely generated solvable groups and curvature of Riemannian manifolds”, J. Differential Geom., 2 (1968), 421–446 | MR | Zbl

[11] Bass H., “The degree of polynomial growth of finitely generated nilpotent groups”, Proc. London Math. Soc. (3), 25 (1972), 603–614 | DOI | MR | Zbl

[12] Maltsev A. I., “O gruppakh konechnogo ranga”, Matem. sb., 22:2 (1948), 351–352 | MR | Zbl