Existence of global solutions of multidimensional Burgers's equations of a compressible viscous fluid
Sbornik. Mathematics, Tome 190 (1999) no. 8, pp. 1131-1150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the proof of the global solubility with respect to time and the data of the multidimensional equations of motion of a compressible viscous barotropic fluid in the Burgers approximation (in the absence of pressure). On the basis of the techniques of Orlicz spaces new estimates for the density are obtained and the existence of weak solutions of the problem in a bounded domain with no-slip boundary conditions is established. The stress-strain constitutive relation adopted in this case is strongly non-linear, that is, the viscosity coefficients are rapidly increasing functions of invariants of the deformation velocity tensor. It is also proved that each solution in the above class is a suitable weak solution which satisfies the energy identity and the mass conservation law.
@article{SM_1999_190_8_a1,
     author = {A. E. Mamontov},
     title = {Existence of global solutions of multidimensional {Burgers's} equations of a~compressible viscous fluid},
     journal = {Sbornik. Mathematics},
     pages = {1131--1150},
     year = {1999},
     volume = {190},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_8_a1/}
}
TY  - JOUR
AU  - A. E. Mamontov
TI  - Existence of global solutions of multidimensional Burgers's equations of a compressible viscous fluid
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1131
EP  - 1150
VL  - 190
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_8_a1/
LA  - en
ID  - SM_1999_190_8_a1
ER  - 
%0 Journal Article
%A A. E. Mamontov
%T Existence of global solutions of multidimensional Burgers's equations of a compressible viscous fluid
%J Sbornik. Mathematics
%D 1999
%P 1131-1150
%V 190
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1999_190_8_a1/
%G en
%F SM_1999_190_8_a1
A. E. Mamontov. Existence of global solutions of multidimensional Burgers's equations of a compressible viscous fluid. Sbornik. Mathematics, Tome 190 (1999) no. 8, pp. 1131-1150. http://geodesic.mathdoc.fr/item/SM_1999_190_8_a1/

[1] Sedov L. I., Mekhanika sploshnoi sredy, T. 1, Nauka, M., 1970 | Zbl

[2] Kazhikhov A. V., Shelukhin V. V., “Odnoznachnaya razreshimost “v tselom” po vremeni nachalno-kraevykh zadach dlya odnomernykh uravnenii vyazkogo gaza”, Prikl. matem. i mekh., 41:2 (1977), 282–291 | MR | Zbl

[3] Vaigant V. A., “Stabilizatsiya reshenii neodnorodnoi kraevoi zadachi dlya uravnenii vyazkogo teploprovodnogo gaza”, Zadachi mekhaniki sploshnoi sredy so svobodnymi granitsami, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1991, 31–52 | MR

[4] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983 | Zbl

[5] Kazhikhov A. V., “Uravneniya potentsialnykh techenii vyazkoi szhimaemoi zhidkosti pri malykh chislakh Reinoldsa: suschestvovanie, edinstvennost i stabilizatsiya reshenii”, Sib. matem. zhurn., 34:3 (1993), 70–80 | MR | Zbl

[6] Vaigant V. A., Kazhikhov A. V., “Globalnye resheniya uravnenii potentsialnykh techenii szhimaemoi vyazkoi zhidkosti pri malykh chislakh Reinoldsa”, Differents. uravneniya, 30:6 (1994), 1010–1022 | MR | Zbl

[7] Mamontov A. E., “Korrektnost kvazistatsionarnoi modeli szhimaemoi vyazkoi zhidkosti”, Sib. matem. zhurn., 37:5 (1996), 1117–1131 | MR | Zbl

[8] Serrin J., “On the uniqueness of compressible fluid motion”, Arch. Rational Mech. Anal., 3:3 (1959), 271–299 | DOI | MR

[9] Solonnikov V. A., “O razreshimosti nachalno-kraevoi zadachi dlya uravnenii dvizheniya vyazkoi szhimaemoi zhidkosti”, Issledovaniya po lineinym operatoram i teorii funktsii, no. 6, Nauka, L., 1976, 128–142 | MR | Zbl

[10] Nash J., “Le probleme de Cauchy pour les equations differentielles d'un fluide general”, Bull. Soc. Math. France, 90:4 (1962), 487–491 | MR

[11] Itaya N., “The existence and uniqueness of the solution of the equations describing compressible viscous fluid flow”, Proc. Japan Acad. Ser. A Math. Sci., 46:4 (1970), 379–382 | MR | Zbl

[12] Volpert A. I., Khudyaev S. I., “O zadache Koshi dlya sostavnykh sistem nelineinykh differentsialnykh uravnenii”, Matem. sb., 87:4 (1972), 504–528 | MR | Zbl

[13] Tani A., “On the first initial-boundary value problem of compressible viscous fluid motion”, Publ. Res. Inst. Math. Sci., 13:1 (1977), 193–253 | DOI | Zbl

[14] Matsumura A., Nishida T., “The initial value problem for the equations of motion of viscous and heat-conductive gases”, J. Math. Kyoto Univ., 20:1 (1980), 67–104 | MR | Zbl

[15] Padula M., “Existence of global solutions for 2-dimentional viscous compressible flows”, J. Funct. Anal., 69 (1986), 1–20 | DOI | MR | Zbl

[16] Lions P. L., “Compacité des solutions des equations de Navier–Stokes compressibles isentropiques”, C. R. Acad. Sci. Paris Sér. I Math., 317:1 (1993), 115–120 | MR | Zbl

[17] Vaigant V. A., Kazhikhov A. V., “O suschestvovanii globalnykh reshenii dvumernykh uravnenii Nave–Stoksa szhimaemoi vyazkoi zhidkosti”, Sib. matem. zhurn., 36:6 (1995), 1283–1316 | MR | Zbl

[18] Vaigant V. A., “Primer nesuschestvovaniya “v tselom” po vremeni resheniya uravnenii Nave–Stoksa szhimaemoi vyazkoi barotropnoi zhidkosti”, Dinamika zhidkosti so svobodnymi granitsami, Izd-vo in-ta gidrodinamiki SO RAN, Novosibirsk, 1993, 39–48 | MR

[19] Ladyzhenskaya O. A., “O modifikatsiyakh uravnenii Nave–Stoksa dlya bolshikh gradientov skorostei”, Zapiski nauch. sem. LOMI, 7, Nauka, L., 1968, 126–154 | MR | Zbl

[20] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[21] Kufner A., Fučik S., John O., Function Spaces, Academia, Prague, 1977 | MR | Zbl

[22] Shinbrot M., “The energy equation for the Navier–Stokes system”, SIAM J. Math. Anal., 5:6 (1974), 948–954 | DOI | MR

[23] Beirao da Veiga H., “On the construction of suitable weak solution to the Navier–Stokes equations via a general approximation theorem”, J. Math. Pures Appl., 64 (1995), 321–334 | MR

[24] Serrin Dzh., Matematicheskie osnovy klassicheskoi mekhaniki zhidkosti, IL, M., 1963

[25] Yudovich V. I., Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo Rostovskogo un-ta, Rostov, 1984 | Zbl

[26] Mamontov A. E., “Ekstrapolyatsiya lineinykh operatorov iz $L_p$ v prostranstva Orlicha, porozhdennye bystro ili medlenno rastuschimi $\mathrm N$-funktsiyami”, Aktualnye problemy sovremennoi matematiki, T. 2, Izd-vo NGU, Novosibirsk, 1996, 95–103

[27] Simon J., “Compact sets in the space $L_p(0,T;B)$”, Ann. Mat. Pura Appl. (4), 146 (1987), 65–96 | DOI | MR | Zbl

[28] Cianchi A., Embedding theorems for Sobolev–Orlicz spaces, Preprint, Univ. di Firenze, 1994 | MR

[29] Simonenko I. B., “Interpolyatsiya i ekstrapolyatsiya lineinykh operatorov v prostranstvakh Orlicha”, Matem. sb., 63 (105):4 (1964), 536–553 | MR | Zbl

[30] Kazhikhov A. V., Mamontov A. E., “Ob odnom klasse vypuklykh funktsii i tochnykh klassakh korrektnosti zadachi Koshi dlya uravneniya perenosa v prostranstvakh Orlicha”, Sib. matem. zhurn., 39:4 (1998), 831–850 | MR | Zbl