On subgroups of R. Thompson's group $F$ and other diagram groups
Sbornik. Mathematics, Tome 190 (1999) no. 8, pp. 1077-1130 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we continue our study of an interesting class of groups, the so-called diagram groups. In simple terms, a diagram is a labelled planar graph bounded by two paths (the top and the bottom ones). Multiplication of diagrams is defined naturally: the top path of one diagram is identified with the bottom path of another diagram, and then pairs of “cancellable” cells are deleted. Each diagram group is determined by some alphabet $X$ containing all possible labels of edges, a set of relations $\mathscr R=\{u_i=v_i:i=1,2,\dots\}$ defining all possible labels of cells, and a word $w$ over $X$ that is the label of the top and bottom paths of diagrams. Diagrams may be regarded as two-dimensional words, and diagram groups as two-dimensional analogues of free groups. In our previous paper we showed that the class of diagram groups contains many interesting groups, including the famous R. Thompson's group $F$ (which corresponds to the simplest set of relations $\{x=x^2\}$); this class is closed under direct and free products and a number of other constructions. In this article we study mainly subgroups of diagram groups. We show that not every subgroup of a diagram group is itself a diagram group (an answer to a question from the previous paper). We prove that every nilpotent subgroup of a diagram group is Abelian, every Abelian subgroup is free, but even the group $F$ contains soluble subgroups of any derived length. We study also distortion of subgroups in diagram groups, including the group $F$. It turns out that the centralizers of elements and Abelian subgroups in diagram groups are always embedded without distortion. But the group $F$ contains distorted soluble subgroups.
@article{SM_1999_190_8_a0,
     author = {V. S. Guba and M. V. Sapir},
     title = {On subgroups of {R.~Thompson's} group~$F$ and other diagram groups},
     journal = {Sbornik. Mathematics},
     pages = {1077--1130},
     year = {1999},
     volume = {190},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_8_a0/}
}
TY  - JOUR
AU  - V. S. Guba
AU  - M. V. Sapir
TI  - On subgroups of R. Thompson's group $F$ and other diagram groups
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1077
EP  - 1130
VL  - 190
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_8_a0/
LA  - en
ID  - SM_1999_190_8_a0
ER  - 
%0 Journal Article
%A V. S. Guba
%A M. V. Sapir
%T On subgroups of R. Thompson's group $F$ and other diagram groups
%J Sbornik. Mathematics
%D 1999
%P 1077-1130
%V 190
%N 8
%U http://geodesic.mathdoc.fr/item/SM_1999_190_8_a0/
%G en
%F SM_1999_190_8_a0
V. S. Guba; M. V. Sapir. On subgroups of R. Thompson's group $F$ and other diagram groups. Sbornik. Mathematics, Tome 190 (1999) no. 8, pp. 1077-1130. http://geodesic.mathdoc.fr/item/SM_1999_190_8_a0/

[1] Kilibarda V., On the algebra of semigroup diagrams, Ph. D. Thesis, Univ. of Nebraska–Lincoln, 1994

[2] Kilibarda V., “On the algebra of semigroup diagrams”, Internat. J. Algebra Comput., 7:3 (1997), 313–338 | DOI | MR | Zbl

[3] Guba V. S., Sapir M. V., “Diagram groups”, Mem. Amer. Math. Soc., 130:620 (1997), 1–117 | MR

[4] Pride S. J., “Low-dimensional homotopy theory for monoids”, Internat. J. Algebra Comput., 5:6 (1995), 631–649 | DOI | MR | Zbl

[5] Lothaire M., Combinatorics on words, Addison-Wesley, Reading, 1983 | MR | Zbl

[6] Brown K. S., “Finiteness properties of groups”, J. Pure Appl. Algebra, 44 (1987), 45–75 | DOI | MR | Zbl

[7] Burillo J., “Quasi-isometrically embedded subgroups of Thompson's group $F$”, J. Algebra, 212:1 (1999), 65–78 | DOI | MR | Zbl

[8] Kashintsev E. V., “Grafy i problema slov dlya konechno-predstavlennykh polugrupp”, Uch. zap. Tulskogo ped. in-ta, 2 (1970), 290–302

[9] Remmers J. H., “On the geometry of semigroup presentations”, Adv. Math., 36:3 (1980), 283–296 | DOI | MR | Zbl

[10] Higgins P. M., Techniques of semigroup theory, Oxford Univ. Press, New York, 1992 | MR | Zbl

[11] Stallings J. R., “A graph-theoretic lemma and group-embeddings”, Ann. of Math. Stud., 111 (1987), 145–155 | MR | Zbl

[12] Cannon J. W., Floyd W. J., Parry W. R., “Introductory notes on Richard Thompson's groups”, Enseign. Math. (2), 42:3–4 (1996), 215–256 | MR | Zbl

[13] Guba V., “Polynomial upper bounds for the Dehn function of R. Thompson's group $F$”, J. Group Theory, 1 (1998), 203–211 | DOI | MR | Zbl

[14] Guba V. S., Sapir M. V., “The Dehn function and a regular set of normal forms for R. Thompson's group $F$”, J. Austral. Math. Soc. Ser. A, 62:3 (1997), 315–328 | DOI | MR | Zbl

[15] Squier C. C., Otto F., Kobayashi Y., “A finiteness condition for rewriting systems”, Theoret. Comput. Sci., 131 (1994), 271–294 | DOI | MR | Zbl

[16] Pride S. J., “Geometric methods in combinatorial group theory”, Semigroups, formal languages and groups (York, UK, 1993), Kluwer Acad. Publ., Dordrecht, 1995, 215–232 | MR | Zbl

[17] Serre J.-P., Trees, Springer-Verlag, Berlin, 1980 | MR | Zbl

[18] Haefliger A., “Complexes of groups and orbihedra”, Group theory from a geometrical viewpoint (Trieste, Italy, 1990), World Scientific, Singapore, 1991, 504–540 | MR | Zbl

[19] Stillwell J., Classical topology and combinatorial group theory, Springer-Verlag, New York, 1980 | MR

[20] Sarkisyan R. A., “Problema sopryazhennosti dlya naborov tselochislennykh matrits”, Matem. zametki, 25:6 (1979), 811–824 | MR | Zbl

[21] Grunewald F., Segal D., “Some general algorithms. 1: Arithmetic groups”, Ann. of Math. (2), 112 (1980), 531–583 | DOI | MR | Zbl

[22] Brin M. G., “The ubiquity of Thompson's group $F$ in groups of piecewise linear homeomorphisms of the unit interval”, J. London Math. Soc. (2) (to appear)

[23] Brin M. G., Squier C. C., “Groups of piecewise linear homeomorphisms of the real line”, Invent. Math., 79 (1985), 485–498 | DOI | MR | Zbl

[24] Chebotar A. A., “Podgruppy grupp s odnim opredelyayuschim sootnosheniem, ne soderzhaschie svobodnykh podgrupp ranga $2$”, Algebra i logika, 10:5 (1971), 570–586 | MR | Zbl

[25] Guba V. S., “O svyazi problem ravenstva i delimosti slov dlya polugrupp s odnim opredelyayuschim sootnosheniem”, Izv. RAN. Ser. matem., 61:6 (1997), 27–58 | MR | Zbl

[26] Bogley W. A., Retractive maps and local collapsibility, Ph. D. Thesis, Univ. of Oregon, 1987

[27] Kuzmin Yu. V., “Ob odnom sposobe postoeniya $C$-grupp”, Izv. RAN. Ser. matem., 59:4 (1995), 105–124 | MR | Zbl

[28] Kuzmin Yu. V., “Gruppy zauzlennykh kompaktnykh poverkhnostei i tsentralnye rasshireniya”, Matem. sb., 187:2 (1996), 81–102 | MR | Zbl

[29] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[30] Gromov M., “Asymptotic invariants of infinite groups”, London Math. Soc. Lecture Note Ser., 182, 1993, 1–125 | MR

[31] Ol'shanskii A. Yu., “Distortion functions for subgroups”, Geometric group theory down under (Canberra, Australia, 1996), Walter de Gruyter, 1999, 281–291 | MR

[32] Olshanskii A. Yu., “Ob iskrivlenii podgrupp konechno-opredelennykh grupp”, Matem. sb., 188:11 (1997), 51–98 | MR

[33] Mikhailova K. A., “Problema vkhozhdeniya dlya pryamykh proizvedenii grupp”, Dokl. AN SSSR, 119:6 (1958), 1103–1105 | MR | Zbl