Universal Abelian topological groups
Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 1059-1076
Voir la notice de l'article provenant de la source Math-Net.Ru
A topological group $G$ is said to be universal in a class $\mathscr K$ of topological groups if $G\in\mathscr K$ and if for every group $H\in\mathscr K$ there is a subgroup $K$ of $G$ that is isomorphic to $H$ as a topological group.
A group is constructed that is universal in the class of separable metrizable topological Abelian groups.
@article{SM_1999_190_7_a5,
author = {S. A. Shkarin},
title = {Universal {Abelian} topological groups},
journal = {Sbornik. Mathematics},
pages = {1059--1076},
publisher = {mathdoc},
volume = {190},
number = {7},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_7_a5/}
}
S. A. Shkarin. Universal Abelian topological groups. Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 1059-1076. http://geodesic.mathdoc.fr/item/SM_1999_190_7_a5/