Universal Abelian topological groups
Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 1059-1076

Voir la notice de l'article provenant de la source Math-Net.Ru

A topological group $G$ is said to be universal in a class $\mathscr K$ of topological groups if $G\in\mathscr K$ and if for every group $H\in\mathscr K$ there is a subgroup $K$ of $G$ that is isomorphic to $H$ as a topological group. A group is constructed that is universal in the class of separable metrizable topological Abelian groups.
@article{SM_1999_190_7_a5,
     author = {S. A. Shkarin},
     title = {Universal {Abelian} topological groups},
     journal = {Sbornik. Mathematics},
     pages = {1059--1076},
     publisher = {mathdoc},
     volume = {190},
     number = {7},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_7_a5/}
}
TY  - JOUR
AU  - S. A. Shkarin
TI  - Universal Abelian topological groups
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1059
EP  - 1076
VL  - 190
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_7_a5/
LA  - en
ID  - SM_1999_190_7_a5
ER  - 
%0 Journal Article
%A S. A. Shkarin
%T Universal Abelian topological groups
%J Sbornik. Mathematics
%D 1999
%P 1059-1076
%V 190
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_7_a5/
%G en
%F SM_1999_190_7_a5
S. A. Shkarin. Universal Abelian topological groups. Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 1059-1076. http://geodesic.mathdoc.fr/item/SM_1999_190_7_a5/