Asymptotic behaviour of solutions of the first boundary-value problem for strongly hyperbolic systems near a conical point at the boundary of the domain
Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 1035-1058 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An existence and uniqueness theorem for generalized solutions of the first initial-boundary-value problem for strongly hyperbolic systems in bounded domains is established. The question of estimates in Sobolev spaces of the derivatives with respect to time of the generalized solution is discussed. It is shown that the smoothness of generalized solutions with respect to time is independent of the structure of the boundary of the domain but depends on the coefficients of the right-hand side. Results on the smoothness of the generalized solution and its asymptotic behaviour in a neighbourhood of a conical boundary point are also obtained.
@article{SM_1999_190_7_a4,
     author = {Nguyen Manh Hung},
     title = {Asymptotic behaviour of solutions of the~first boundary-value problem for strongly hyperbolic systems near a~conical point at the~boundary of the~domain},
     journal = {Sbornik. Mathematics},
     pages = {1035--1058},
     year = {1999},
     volume = {190},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_7_a4/}
}
TY  - JOUR
AU  - Nguyen Manh Hung
TI  - Asymptotic behaviour of solutions of the first boundary-value problem for strongly hyperbolic systems near a conical point at the boundary of the domain
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1035
EP  - 1058
VL  - 190
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_7_a4/
LA  - en
ID  - SM_1999_190_7_a4
ER  - 
%0 Journal Article
%A Nguyen Manh Hung
%T Asymptotic behaviour of solutions of the first boundary-value problem for strongly hyperbolic systems near a conical point at the boundary of the domain
%J Sbornik. Mathematics
%D 1999
%P 1035-1058
%V 190
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1999_190_7_a4/
%G en
%F SM_1999_190_7_a4
Nguyen Manh Hung. Asymptotic behaviour of solutions of the first boundary-value problem for strongly hyperbolic systems near a conical point at the boundary of the domain. Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 1035-1058. http://geodesic.mathdoc.fr/item/SM_1999_190_7_a4/

[1] Kreiss H. O., “Initial boundary value problem for hyperbolic systems”, Comm. Pure Appl. Math., 3 (1970), 277–298 | DOI | MR

[2] Sakamoto R., “Smeshannye zadachi dlya giperbolicheskikh uravnenii”, Matematika, 16:1 (1972), 62–80 | MR | Zbl

[3] Blokhin A. M., Tkachev D. L., “Smeshannaya zadacha dlya volnovogo uravneniya v oblasti s uglom (skalyarnyi sluchai)”, Sib. matem. zhurn., 15:3 (1989), 16–23 | MR

[4] Plamenevskii B. A., “O volnovom uravnenii v tsilindre s rebrami”, Funkts. analiz i ego prilozh., 32:1 (1998), 81–84 | MR | Zbl

[5] Eskin G., “The wave equation in a wedge with general boundary conditions”, Comm. Partial Differential Equations, 17:1–2 (1992), 99–160 | MR | Zbl

[6] Ladyzhenskaya O. A., “O nestatsionarnykh operatornykh uravneniyakh i ikh prilozheniyakh k lineinym zadacham matematicheskoi fiziki”, Matem. sb., 45(87):2 (1958), 123–158 | MR | Zbl

[7] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[8] Melnikov I. I., “Osobennosti resheniya smeshannoi zadachi dlya giperbolicheskikh uravnenii vtorogo poryadka v oblastyakh s kusochno gladkoi granitsei”, UMN, 37:1 (1982), 149–150 | MR | Zbl

[9] Naval Saied Akhmed Sherif, “Smeshannaya zadacha dlya giperbolicheskikh uravnenii v oblastyakh s negladkoi granitsei”, Vestn. MGU. Ser. 1. Matem., mekh., 1980, no. 3, 7–10 | Zbl

[10] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[11] Agmon S., Duglis A., Nirenberg L., Otsenki vblizi granitsy reshenii ellipticheskikh uravnenii v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, T. I, IL, M., 1962

[12] Mazya V. G., Plamenevskii B. A., “O koeffitsientakh v asimptotike reshenii ellipticheskikh kraevykh zadach v oblastyakh s konicheskimi tochkami”, Math. Nachr., 76 (1977), 29–60 | DOI | MR | Zbl

[13] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[14] Eni V. M., “Ob ustoichivosti kornevogo chisla analiticheskoi operator-funktsii i o vozmuscheniyakh ee kharakteristicheskikh chisel i sobstvennykh vektorov”, Dokl. AN SSSR, 173:6 (1967), 1251–1254 | MR | Zbl