Scattering in multiparticle and billiard dynamical systems
Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 1005-1033 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The object of study is scattering in billiard dynamical systems and in multiparticle systems on a line (with potential interaction). There exist examples in which the scattering map for such systems is triangular, that is, the corresponding Jacobi matrix has block-triangular form. In this paper it is proved that the billiard scattering in a convex polyhedral cone is triangular if and only if the cone is the closure of some chamber of a Coxeter group. All systems of masses for which multiparticle systems with billiard interaction have triangle scattering are listed. Further, it is proved for multiparticle systems with repulsive interaction that the system of masses of the particles must belong to this list in the case of triangular scattering. Convex plane domains in which the billiards have a triangular scattering map are characterized.
@article{SM_1999_190_7_a3,
     author = {A. Yu. Plakhov and A. M. Stepin},
     title = {Scattering in multiparticle and billiard dynamical systems},
     journal = {Sbornik. Mathematics},
     pages = {1005--1033},
     year = {1999},
     volume = {190},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_7_a3/}
}
TY  - JOUR
AU  - A. Yu. Plakhov
AU  - A. M. Stepin
TI  - Scattering in multiparticle and billiard dynamical systems
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 1005
EP  - 1033
VL  - 190
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_7_a3/
LA  - en
ID  - SM_1999_190_7_a3
ER  - 
%0 Journal Article
%A A. Yu. Plakhov
%A A. M. Stepin
%T Scattering in multiparticle and billiard dynamical systems
%J Sbornik. Mathematics
%D 1999
%P 1005-1033
%V 190
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1999_190_7_a3/
%G en
%F SM_1999_190_7_a3
A. Yu. Plakhov; A. M. Stepin. Scattering in multiparticle and billiard dynamical systems. Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 1005-1033. http://geodesic.mathdoc.fr/item/SM_1999_190_7_a3/

[1] Marchioro C., “Solution of a three-body scattering problem in one dimension”, J. Math. Phys., 11 (1970), 2193–2196 | DOI

[2] Calodgero F., Marchioro C., “Exact solution of a one-dimensional three-body scattering problem with two-body and/or three-body inverse square potential”, J. Math. Phys., 15 (1974), 1425–1430 | DOI | MR

[3] Moser J., “Three integrable Hamiltonian systems connected with isospectral deformation”, Adv. Math., 16:2 (1975), 197–220 | DOI | MR | Zbl

[4] Moser J., “Finitely many mass points on the line under the influence of an exponential potential”, Lecture Notes in Phys., 38, 1975, 467–497 | MR | Zbl

[5] Kulish P. P., “Faktorizatsiya klassicheskoi i kvantovoi $S$-matrits i zakony sokhraneniya”, TMF, 26:2 (1976), 198–205 | MR

[6] Moser J., “The scattering problem for some particle systems on the line”, Lecture Notes in Math., 597, 1977, 441–463 | MR | Zbl

[7] Himchenko N. G., Sinai Ya. G., “On the description of classical reflectionless potentials”, Rep. Math. Phys., 20:1 (1980) | MR

[8] Plakhov A. Yu., Ob otobrazhenii rasseyaniya klassicheskikh gamiltonovykh sistem, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1985

[9] Herbst I. W., “Classical scattering with long range forces”, Comm. Math. Phys., 35:3 (1974), 193–214 | DOI | MR | Zbl

[10] Alsholm P., “Wave operators for long range scattering”, J. Math. Anal. Appl., 59:3 (1977), 550–572 | DOI | MR | Zbl

[11] Stepin A. M., “Bilyardnye i gamiltonovy sistemy s rasseyaniem”, UMN, 44:4 (1989), 212

[12] Plakhov A. Yu., Stepin A. M., “Rasseyanie i gruppy Kokstera”, UMN, 53:2 (1998), 159–160 | MR | Zbl

[13] Burbaki N., Gruppy i algebry Li. Gruppy Kokstera i sistemy Titsa; gruppy, porozhdennye otrazheniyami; sistemy kornei, Mir, M., 1972 | MR | Zbl

[14] Vorobets Ya. B., Galperin G. A., Stepin A. M., “Periodicheskie bilyardnye traektorii: mekhanizmy rozhdeniya”, UMN, 47:3 (1992), 9–74 | MR | Zbl

[15] Sinai Ya. G., “Bilyardnye traektorii v mnogogrannom ugle”, UMN, 33:1 (1978), 229–230 | MR | Zbl

[16] Kokster G. S. M., Mozer U. O. Dzh., Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980

[17] Kozlov V. V., Treschev D. V., Billiardy. Geneticheskoe vvedenie v dinamiku sistem s udarami, Izd-vo MGU, M., 1991 | Zbl

[18] Galperin G. A., “O sistemakh lokalno vzaimodeistvuyuschikh i ottalkivayuschikhsya chastits, dvizhuschikhsya v prostranstve”, Tr. MMO, 43, URSS, M., 1981, 142–196 | MR | Zbl

[19] Olshanetskii M. A., Perelomov A. M., Reiman A. G., Semenov-Tyan-Shanskii M. A., “Integriruemye sistemy, II”, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napr., 16, VINITI, M., 1987, 86–226 | MR

[20] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[21] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl