Existence of boundary values for solutions of degenerate elliptic equations
Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 973-1004 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The behaviour near the boundary of the solution of a second-order elliptic equation degenerate at some part of the boundary is discussed. The case is considered when the quadratic form corresponding to the principal part of the differential operator vanishes at the (unit) normal vector to the boundary and the setting of the first boundary-value problem (problem D or problem E) depends on the values of the coefficients of the first derivatives (Keldysh-type degeneracy). Conditions on the solution of the equation necessary and sufficient for the existence of its limit on the part of the boundary on which one sets boundary values in the first boundary-value problem are found. A solution satisfying these conditions proves to have limit also at the remaining part of the boundary. In addition, a closely related problem on the unique solubility of the corresponding boundary-value problem with boundary functions in $L_p$ is studied.
@article{SM_1999_190_7_a2,
     author = {I. M. Petrushko},
     title = {Existence of boundary values for solutions of degenerate elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {973--1004},
     year = {1999},
     volume = {190},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_7_a2/}
}
TY  - JOUR
AU  - I. M. Petrushko
TI  - Existence of boundary values for solutions of degenerate elliptic equations
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 973
EP  - 1004
VL  - 190
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_7_a2/
LA  - en
ID  - SM_1999_190_7_a2
ER  - 
%0 Journal Article
%A I. M. Petrushko
%T Existence of boundary values for solutions of degenerate elliptic equations
%J Sbornik. Mathematics
%D 1999
%P 973-1004
%V 190
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1999_190_7_a2/
%G en
%F SM_1999_190_7_a2
I. M. Petrushko. Existence of boundary values for solutions of degenerate elliptic equations. Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 973-1004. http://geodesic.mathdoc.fr/item/SM_1999_190_7_a2/

[1] Mikhailov V. P., “O granichnykh znacheniyakh reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s gladkoi granitsei”, Matem. sb., 101 (143):2 (10) (1976), 163–188 | MR

[2] Guschin A. K., Mikhailov V. P., “O granichnykh znacheniyakh v $L_p$, $p>1$, reshenii ellipticheskikh uravnenii”, Matem. sb., 108 (150):1 (1979), 3–21 | MR | Zbl

[3] Riesz F., “Über die Randwerte einer analyschen Funktion”, Math. Z., 18 (1923), 87–95 | DOI | MR | Zbl

[4] Littlewood J., Paley R., “Theorems on Fourier series and power series, I”, J. London Math. Soc. (2), 6 (1931), 230–233 | DOI | Zbl

[5] Littlewood J., Paley R., “Theorems on Fourier series and power series, II”, Proc. London Math. Soc. (3), 42 (1936), 52–89 | DOI | Zbl

[6] Littlewood J., Paley R., “Theorems on Fourier series and power series, III”, Proc. London Math. Soc. (3), 43 (1937), 105–126 | DOI | Zbl

[7] Petrushko I. M., “O granichnykh znacheniyakh v $L_p$, $p>1$, reshenii ellipticheskikh uravnenii v oblastyakh s lyapunovskoi granitsei”, Matem. sb., 120 (162):4 (1983), 569–588 | MR | Zbl

[8] Guschin A. K., “O zadacha Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 137 (179):1 (9) (1988), 19–64 | MR

[9] Mikhailov Yu. A., “O granichnykh znacheniyakh v $L_p$, $p>1$, reshenii lineinogo ellipticheskogo uravneniya vtorogo poryadka”, Differents. uravneniya, 19:2 (1983), 318–337 | MR

[10] Guschin A. K., Mikhailov V. P., “O suschestvovanii granichnykh znachenii reshenii ellipticheskikh uravnenii”, Matem. sb., 182:6 (1991), 787–810 | Zbl

[11] Guschin A. K., Mikhailov V. P., “O razreshimosti nelokalnykh zadach dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 185:1 (1994), 121–160 | MR | Zbl

[12] Guschin A. K., “Nekotorye svoistva reshenii zadachi Dirikhle dlya ellipticheskogo uravneniya vtorogo poryadka”, Matem. sb., 189:7 (1998), 53–90 | MR | Zbl

[13] Oleinik O. A., Radkevich E. V., “Uravneniya vtorogo poryadka s neotritsatelnoi kharakteristicheskoi formoi”, Itogi nauki i tekhniki. Matem. analiz, VINITI, M., 1971, 7–252 | MR

[14] Petrushko I. M., “O granichnykh znacheniyakh reshenii vyrozhdayuschikhsya na granitse oblasti ellipticheskikh uravnenii”, Matem. sb., 136 (178):2 (6) (1988), 241–259

[15] Petrushko I. M., “O granichnykh znacheniyakh reshenii vyrozhdayuschikhsya ellipticheskikh uravnenii tipa Keldysha so slabym vyrozhdeniem”, Neklassicheskie uravneniya i uravneniya smeshannogo tipa, Novosibirsk, 1990, 166–182 | MR | Zbl

[16] Petrushko I. M., “O granichnykh i nachalnykh usloviyakh v $L_p$, $p>1$, reshenii parabolicheskikh uravnenii”, Matem. sb., 125 (167):4 (12) (1984), 489–521 | MR | Zbl

[17] Koshelev P. I., “Apriornye otsenki v $L_p$ i obobschennye resheniya ellipticheskikh uravnenii i sistem”, UMN, 13:4 (1958), 29–88 | MR

[18] Keldysh M. V., “O nekotorykh sluchayakh vyrozhdeniya uravnenii ellipticheskogo tipa na granitse oblasti”, Dokl. AN SSSR, 77:2 (1951), 181–183 | MR

[19] Tersenov S. A., Vvedenie v teoriyu uravnenii, vyrozhdayuschikhsya na granitse, NGU, Novosibirsk, 1973 | MR