Two-dimensional Waterman classes and $u$-convergence of Fourier series
Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 955-972 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New results on the $u$-convergence of the double Fourier series of functions from Waterman classes are obtained. It turns out that none of the Waterman classes wider than $BV(T^2)$ ensures even the uniform boundedness of the $u$-sums of the double Fourier series of functions in this class. On the other hand, the concept of $u(K)$-convergence is introduced (the sums are taken over regions that are forbidden to stretch along coordinate axes) and it is proved that for functions $f(x,y)$ belonging to the class $\Lambda_{1/2}BV(T^2)$, where $\Lambda_a=\biggl\{\dfrac{n^{1/2}}{{(\ln(n+1))}^a}\biggr\}_{n=1}^\infty$, the corresponding $u(K)$-partial sums are uniformly bounded, while if $f(x,y)\in\Lambda_aBV(T^2)$, where $a<\frac12$, then the double Fourier series of $f(x,y)$ is $u(K)$-convergent everywhere.
@article{SM_1999_190_7_a1,
     author = {M. I. Dyachenko},
     title = {Two-dimensional {Waterman} classes and $u$-convergence of {Fourier} series},
     journal = {Sbornik. Mathematics},
     pages = {955--972},
     year = {1999},
     volume = {190},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_7_a1/}
}
TY  - JOUR
AU  - M. I. Dyachenko
TI  - Two-dimensional Waterman classes and $u$-convergence of Fourier series
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 955
EP  - 972
VL  - 190
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_7_a1/
LA  - en
ID  - SM_1999_190_7_a1
ER  - 
%0 Journal Article
%A M. I. Dyachenko
%T Two-dimensional Waterman classes and $u$-convergence of Fourier series
%J Sbornik. Mathematics
%D 1999
%P 955-972
%V 190
%N 7
%U http://geodesic.mathdoc.fr/item/SM_1999_190_7_a1/
%G en
%F SM_1999_190_7_a1
M. I. Dyachenko. Two-dimensional Waterman classes and $u$-convergence of Fourier series. Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 955-972. http://geodesic.mathdoc.fr/item/SM_1999_190_7_a1/

[1] Waterman D., “On convergence of Fourier series of functions of bounded generalized variation”, Studia Math., 44:1 (1972), 107–117 | MR | Zbl

[2] Arutyunyan F. G., “Predstavlenie funktsii kratnymi ryadami”, Dokl. AN Arm. SSR, 64:2 (1977), 72–76 | MR | Zbl

[3] Arutyunyan F. G., “Predstavlenie izmerimykh funktsii mnogikh peremennykh kratnymi trigonometricheskimi ryadami”, Matem. sb., 126:2 (1985), 267–285 | MR | Zbl

[4] Dyachenko M. I., “$u$-skhodimost kratnykh ryadov Fure”, Izv. RAN. Ser. matem., 59:2 (1995), 128–142 | MR

[5] Dyachenko M. I., “Ravnomernaya skhodimost dvoinykh ryadov Fure dlya klassov funktsii s anizotropnoi gladkostyu”, Matem. zametki, 59:6 (1996), 937–943 | MR | Zbl

[6] Saakyan A. A., “O skhodimosti dvoinykh ryadov Fure funktsii ogranichennoi garmonicheskoi variatsii”, Izv. AN Arm.SSR. Ser. matem., 21:6 (1986), 517–527 | MR

[7] Sablin A. I., “$\Lambda$-variatsiya i ryady Fure”, Izv. vuzov. Ser. matem., 1987, no. 10, 66–68 | MR | Zbl

[8] Chandrasekharan K., Minaksisundaram S., “Some results on double Fourier series”, Duke Math. J., 14:3 (1947), 731–753 | DOI | MR | Zbl

[9] Golubov B. I., “O skhodimosti sfericheskikh srednikh Rissa kratnykh ryadov i integralov Fure ot funktsii ogranichennoi obobschennoi variatsii”, Matem. sb., 89:4 (1972), 630–653 | MR | Zbl

[10] Dyachenko M. I., “Nekotorye problemy teorii kratnykh ryadov Fure”, UMN, 47:5 (1992), 97–162 | MR | Zbl

[11] Dyachenko M. I., “Waterman classes and spherical partial sums of double Fourier series”, Anal. Math., 21:1 (1995), 3–21 | DOI | MR | Zbl

[12] Dyachenko M. I., “Sfericheskie chastichnye summy dvoinykh ryadov Fure funktsii s ogranichennoi obobschennoi variatsiei”, Matem. sb., 188:1 (1997), 29–58 | MR | Zbl

[13] Alimov Sh. A., Ilin V. A., “Usloviya skhodimosti spektralnykh razlozhenii, otvechayuschikh samosopryazhennym rasshireniyam ellipticheskikh operatorov, I”, Differents. uravneniya, 7:4 (1971), 670–710 | MR | Zbl

[14] Temlyakov V. N., “O povedenii chastichnykh summ po giperbolicheskim krestam ryadov Fure periodicheskikh funktsii mnogikh peremennykh”, Tr. MIAN, 192, Nauka, M., 1990, 197–206 | MR

[15] Telyakovskii S. A., “Ravnomernaya ogranichennost nekotorykh trigonometricheskikh polinomov mnogikh peremennykh”, Matem. zametki, 42:1 (1987), 33–39 | MR | Zbl

[16] Telyakovskii S. A., Temlyakov V. N., “O skhodimosti ryadov Fure funktsii mnogikh peremennykh ogranichennoi variatsii”, Matem. zametki, 61:4 (1997), 583–595 | MR | Zbl