Contractions of affine spherical varieties
Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 937-954

Voir la notice de l'article provenant de la source Math-Net.Ru

The language of filtrations and contractions is used to describe the class of $G$-varieties obtainable as the total spaces of the construction of contraction applied to affine spherical varieties, which is well-known in invariant theory. These varieties are local models for arbitrary affine $G$-varieties of complexity 1 with a one-dimensional categorical quotient. As examples, reductive algebraic semigroups and three-dimensional $\operatorname{SL}_2$-varieties are considered.
@article{SM_1999_190_7_a0,
     author = {I. V. Arzhantsev},
     title = {Contractions of affine spherical varieties},
     journal = {Sbornik. Mathematics},
     pages = {937--954},
     publisher = {mathdoc},
     volume = {190},
     number = {7},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_7_a0/}
}
TY  - JOUR
AU  - I. V. Arzhantsev
TI  - Contractions of affine spherical varieties
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 937
EP  - 954
VL  - 190
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_7_a0/
LA  - en
ID  - SM_1999_190_7_a0
ER  - 
%0 Journal Article
%A I. V. Arzhantsev
%T Contractions of affine spherical varieties
%J Sbornik. Mathematics
%D 1999
%P 937-954
%V 190
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_7_a0/
%G en
%F SM_1999_190_7_a0
I. V. Arzhantsev. Contractions of affine spherical varieties. Sbornik. Mathematics, Tome 190 (1999) no. 7, pp. 937-954. http://geodesic.mathdoc.fr/item/SM_1999_190_7_a0/