Mixed problems for the~Korteweg--de~Vries equation
Sbornik. Mathematics, Tome 190 (1999) no. 6, pp. 903-935
Voir la notice de l'article provenant de la source Math-Net.Ru
Results are established concerning the non-local solubility and wellposedness in various function spaces of the mixed problem for the Korteweg–de Vries equation
$$
u_t+u_{xxx}+au_x+uu_x=f(t,x)
$$
in the half-strip $(0,T)\times(-\infty,0)$. Some a priori estimates of the solutions are obtained using a special solution $J(t,x)$ of the linearized KdV equation of boundary potential type. Properties of $J$ are studied which differ essentially as $x\to+\infty$ or $x\to-\infty$. Application of this boundary potential enables us in particular to prove the existence of generalized solutions with non-regular boundary values.
@article{SM_1999_190_6_a6,
author = {A. V. Faminskii},
title = {Mixed problems for {the~Korteweg--de~Vries} equation},
journal = {Sbornik. Mathematics},
pages = {903--935},
publisher = {mathdoc},
volume = {190},
number = {6},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_6_a6/}
}
A. V. Faminskii. Mixed problems for the~Korteweg--de~Vries equation. Sbornik. Mathematics, Tome 190 (1999) no. 6, pp. 903-935. http://geodesic.mathdoc.fr/item/SM_1999_190_6_a6/