On numerical characteristics of subvarieties for three varieties of Lie algebras
Sbornik. Mathematics, Tome 190 (1999) no. 6, pp. 887-902 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathbf V$ be a variety of Lie algebras. For each $n$ we consider the dimension of the space of multilinear elements in $n$ distinct letters of a free algebra of this variety. This gives rise to the codimension sequence $c_n(\mathbf V)$. To study the exponential growth one defines the exponent of the variety $\operatorname{Exp}\mathbf V=\varlimsup_{n\to\infty}\root n\of{c_n(\mathbf V)}$. The variety of Lie algebras with nilpotent derived subalgebra $\mathbf N_s\mathbf A$ is known to have $\operatorname{Exp}(\mathbf N_s\mathbf A)=s$. Over a field of characteristic zero the exponent of every subvariety $\mathbf V\subset \mathbf N_s\mathbf A$ is known to be an integer. We shall prove that this is true over any field. Unlike associative algebras, for varieties of Lie algebras it is typical to have superexponential growth for the codimension sequence. Earlier the author introduced a scale for measuring this growth. The following extreme property is established for two varieties $\mathbf{AN}_2$ and $\mathbf A^3$. Any subvariety in each of them cannot be “just slightly smaller” in terms of this scale. That is, either a subvariety lies at the same point of the scale as the variety itself, or it is situated substantially lower on the scale. These results are also established over an arbitrary field and without using the representation theory of symmetric groups.
@article{SM_1999_190_6_a5,
     author = {V. M. Petrogradsky},
     title = {On numerical characteristics of subvarieties for three varieties of {Lie} algebras},
     journal = {Sbornik. Mathematics},
     pages = {887--902},
     year = {1999},
     volume = {190},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_6_a5/}
}
TY  - JOUR
AU  - V. M. Petrogradsky
TI  - On numerical characteristics of subvarieties for three varieties of Lie algebras
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 887
EP  - 902
VL  - 190
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_6_a5/
LA  - en
ID  - SM_1999_190_6_a5
ER  - 
%0 Journal Article
%A V. M. Petrogradsky
%T On numerical characteristics of subvarieties for three varieties of Lie algebras
%J Sbornik. Mathematics
%D 1999
%P 887-902
%V 190
%N 6
%U http://geodesic.mathdoc.fr/item/SM_1999_190_6_a5/
%G en
%F SM_1999_190_6_a5
V. M. Petrogradsky. On numerical characteristics of subvarieties for three varieties of Lie algebras. Sbornik. Mathematics, Tome 190 (1999) no. 6, pp. 887-902. http://geodesic.mathdoc.fr/item/SM_1999_190_6_a5/

[1] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl

[2] Regev A., “Existence of polynomial identities in $A\otimes B$”, Bull. Amer. Math. Soc., 77:6 (1971), 1067–1069 | DOI | MR | Zbl

[3] Regev A., “Existence of identities in $A\otimes B$”, Israel J. Math., 11 (1972), 131–152 | DOI | MR | Zbl

[4] Latyshev V. N., “K teoreme Regeva o tozhdestvakh tenzornogo proizvedeniya PI-algebr”, UMN, 27:4 (1972), 213–214 | MR | Zbl

[5] Regev A., “Asymptotics for codimensions of some P. I. Algebras”, Proceedings of “Ring Theory Conference” (Miskolz), 1996, 159–172 | MR

[6] Giambruno A., Zaicev M. V., “Exponential growth of codimensions of PI-Algebra”, Kurosh algebraic conference'98 (Moscow), 1998, 54–55

[7] Mischenko S. P., “Rost mnogoobrazii algebr Li”, UMN, 45:6 (1990), 25–45 | Zbl

[8] Mischenko S. P., “Nizhnie otsenki razmernostei neprivodimykh predstavlenii simmetricheskikh grupp i pokazatelei eksponenty mnogoobrazii algebr Li”, Matem. sb., 187:1 (1996), 83–94 | MR | Zbl

[9] Shmelkin A. L., “Svobodnye polinilpotentnye gruppy”, Izv. AN SSSR. Ser. matem., 28:1 (1964), 91–122 | MR | Zbl

[10] Petrogradskii V. M., “Rost polinilpotentnykh mnogoobrazii algebr Li i bystro rastuschie tselye funktsii”, Matem. sb., 188:6 (1997), 119–138 | MR | Zbl

[11] Drensky V., “Relations for the cocharacter sequences of $T$-ideals”, Proc. Int. Conf. on Algebra (Novosibirsk, 1989), 285–300 ; Contemp. Math., Part 2, 131, Amer. Math. Soc., Providence, RI, 1992 | MR | Zbl

[12] Mishchenko S. P., Petrogradsky V. M., “Exponents of varieties of Lie algebras with a nilpotent commutator subalgebra”, Comm. Algebra, 1999 (to appear) | MR

[13] Zaicev M. V., Mishchenko S. P., “Example of Lie algebra variety with the fractional exponent”, Contemp. Math., 1999 (to appear)

[14] Volichenko I. B., “O mnogoobrazii algebr Li ${\mathbf A}{\mathbf N}_2$ nad polem kharakteristiki nul”, Dokl. AN BSSR, 25:12 (1981), 1063–1066 | MR | Zbl

[15] Petrogradskii V. M., “O tipakh sverkheksponentsialnogo rosta tozhdestv v PI-algebrakh Li”, Fundament. i prikl. matem., 1:4 (1995), 989–1007 | MR | Zbl

[16] Petrogradsky V. M., “Exponential generating functions and complexity of Lie varieties”, Israel J. Math. (to appear) | MR | Zbl

[17] Petrogradsky V. M., “Scale for codimension growth of Lie algebras”, Methods in ring theory, Lecture Notes in Pure and Appl. Math., 198, eds. V. Drensky et al., 1998, 213–222 | MR | Zbl

[18] Mischenko S. P., “Mnogoobraziya algebr Li so slabym rostom korazmernostei”, Vestn. MGU. Ser. matem., mekh., 1982, no. 5, 63–66 | Zbl

[19] Mischenko S. P., “O mnogoobraziyakh algebr Li promezhutochnogo rosta”, Vestsi AN BSSR. Ser. fiz-mat. navuk, 1987, no. 2, 42–45 | MR | Zbl

[20] Razmyslov Yu. P., Tozhdestva algebr i ikh predstavlenii, Nauka, M., 1989 | MR | Zbl

[21] Razmyslov Yu. P., “O slozhnosti mnogoobrazii algebr Li i ikh predstavlenii”, Vestn. MGU. Ser. 1. Matem., mekh., 1988, no. 4, 75–78 | MR

[22] Grishkov A. N., “O roste mnogoobrazii algebr Li”, Matem. zametki, 44:1 (1988), 51–54 | MR

[23] Mischenko S. P., “Tozhdestvo engelevosti i ego prilozheniya”, Matem. sb., 121:3 (1983), 423–430 | MR | Zbl

[24] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR | Zbl

[25] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[26] Volichenko I. B., “Mnogoobraziya algebr Li s tozhdestvom $[[X_1,X_2,X_3],[X_4,X_5,X_6]]\allowmathbreak=\nobreak 0$ nad polem kharakteristiki nol”, Sib. matem. zhurn., 25:3 (1984), 40–54 | MR | Zbl

[27] Kholl M., Kombinatorika, Mir, M., 1970 | MR

[28] Bokut L. A., “Baza svobodnykh polinilpotentnykh algebr Li”, Algebra i logika, 2:4 (1963), 13–20 | MR

[29] Reutenauer C., Free Lie algebras, Clarendon Press, Oxford, 1993 | MR | Zbl