@article{SM_1999_190_6_a4,
author = {V. A. Milman},
title = {Absolutely minimal extensions of functions on metric spaces},
journal = {Sbornik. Mathematics},
pages = {859--885},
year = {1999},
volume = {190},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_6_a4/}
}
V. A. Milman. Absolutely minimal extensions of functions on metric spaces. Sbornik. Mathematics, Tome 190 (1999) no. 6, pp. 859-885. http://geodesic.mathdoc.fr/item/SM_1999_190_6_a4/
[1] Buzeman G., Vypuklye poverkhnosti, Nauka, M., 1964 | MR
[2] McShane E., “Extension of range of function”, Bull. Amer. Math. Soc., 40:12 (1934), 837–842 | DOI | MR | Zbl
[3] Mustata C., Extension of Hölder functions and some related problems of best approximation, Research Seminars. Preprint No 7, Babes–Bolyai University. Faculty of Mathematics, 1991, p. 71–86 | MR | Zbl
[4] Aronsson G., “Extension of functions satisfying Lipschitz conditions”, Ark. Mat., 6:6 (1967), 551–561 | DOI | MR | Zbl
[5] Batthacharya T., Di Benedetto E., Manfredi J., “Limits as $p\to\infty$ of $\Delta_pu_p=f$ and related extremal problems”, Rend. Sem. Mat. Univ. Politec. Torino, 1989, 15–68
[6] Aronsson G., “On the partial differential equation $u^2_xu_{xx}+2u_xu_yu_{xy}+u^2_yu_{yy}=0$”, Ark. Mat., 7 (1968), 395–425 | DOI | MR | Zbl
[7] Jensen R., “Uniqueness of Lipschitz extensions: Minimizing the sup-norm of the gradient”, Arch. Rational Mech. Anal., 123:1 (1993), 51–74 | DOI | MR | Zbl
[8] Crandall M. G., Ishii H., Lions P.-L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., New Ser., 27:1 (1992), 1–67 | DOI | MR | Zbl
[9] Aronsson G., “Construction of singular solutions to the $p$-harmonic equations and its limit equation for $p=\infty$”, Manuscripta Math., 56:2 (1986), 135–158 | DOI | MR
[10] Evans L., “Estimates for smooth absolutely minimizing Lipschitz extensions”, Electron. J. Differential Equations, 1993, no. 3, 1–10 ; ; http://ejde.math.swt.eduhttp://ejde.math.unt.edu | MR
[11] Lindqvist P., Manfredi J., “The Harnack inequality for $\infty$-harmonic functions”, Electron. J. Differential Equations, 1995, no. 4, 1–5 ; ; http://ejde.math.swt.eduhttp://ejde.math.unt.edu | MR
[12] Janfalk U., “Behaviour in the limit, as $p\to\infty$, of minimizers of functionals involving $p$-Dirichlet integrals”, SIAM J. Math. Anal., 27:26 (1996), 341–360 | DOI | MR | Zbl
[13] Krcho J., “Morphometric analysis of relief on the basis of geometric aspects of field theory”, Acta Geographico-Physica (Bratislava), 1973, no. 1, 15–78
[14] Milman V. A., “Lipshitsevy prodolzheniya lineino ogranichennykh funktsii”, Matem. sb., 189:8 (1998), 67–92 | MR
[15] Milman V. A., “Prodolzhenie funktsii s sokhraneniem modulya nepreryvnosti”, Vestsi AN Belarusi. Ser. fiz.-mat. navuk, 1996, no. 4, 23–28 | MR | Zbl
[16] Pleschinskii N. B., “O postroenii funktsii, udovletvoryayuschikh usloviyu Geldera s zadannym pokazatelem”, Izv. vuzov. Ser. matem., 1984, no. 8, 74–77 | Zbl
[17] Czipcer J., Geher L., “Extension of functions satisfying a Lipschitz condition”, Acta Math. Hungar., 6:1–2 (1955), 213–220 | MR
[18] Le Gruyer E., Archer J. C., “Stability and convergence of extension schemes to continuous functions in general metric spaces”, SIAM J. Math. Anal., 27:1 (1996), 274–285 | DOI | MR | Zbl
[19] Le Gruyer E., Archer J. C., “Harmonious extensions”, SIAM J. Math. Anal., 29:1 (1998), 279–292 | DOI | MR | Zbl
[20] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR | Zbl
[21] Shvarts L., Analiz, T. 1, Mir, M., 1972
[22] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl
[23] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964
[24] Sleźak B., “A mean value theorem in metric spaces”, Constructive Theory of Functions, Publ. House Bulgarian Acad. Sci., Sofia, 1988, 47–49 | MR
[25] Milman V. A., “Prodolzhenie funktsii, sokhranyayuschee modul nepreryvnosti”, Matem. zametki, 61:2 (1997), 236–245 | MR | Zbl