Extremal problems in the~theory of analytic continuation
Sbornik. Mathematics, Tome 190 (1999) no. 5, pp. 737-761

Voir la notice de l'article provenant de la source Math-Net.Ru

For an exponential series with positive exponents making up a sequence of positive step Mandelbrojt's estimates of the length of a strip in which this series can be continued are improved. On the way, an estimate of the Leont'ev condensation index is obtained which is best possible in the class of sequences of fixed step and fixed upper density.
@article{SM_1999_190_5_a3,
     author = {A. Yu. Popov},
     title = {Extremal problems in the~theory of analytic continuation},
     journal = {Sbornik. Mathematics},
     pages = {737--761},
     publisher = {mathdoc},
     volume = {190},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_5_a3/}
}
TY  - JOUR
AU  - A. Yu. Popov
TI  - Extremal problems in the~theory of analytic continuation
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 737
EP  - 761
VL  - 190
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_5_a3/
LA  - en
ID  - SM_1999_190_5_a3
ER  - 
%0 Journal Article
%A A. Yu. Popov
%T Extremal problems in the~theory of analytic continuation
%J Sbornik. Mathematics
%D 1999
%P 737-761
%V 190
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_5_a3/
%G en
%F SM_1999_190_5_a3
A. Yu. Popov. Extremal problems in the~theory of analytic continuation. Sbornik. Mathematics, Tome 190 (1999) no. 5, pp. 737-761. http://geodesic.mathdoc.fr/item/SM_1999_190_5_a3/