Extremal problems in the~theory of analytic continuation
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 190 (1999) no. 5, pp. 737-761
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For an exponential series with positive exponents making up a sequence of positive step Mandelbrojt's estimates of the length of a strip in which this series can be continued are improved. On the way, an estimate of the Leont'ev condensation index is obtained which is best possible in the class of sequences of fixed step and fixed upper density.
			
            
            
            
          
        
      @article{SM_1999_190_5_a3,
     author = {A. Yu. Popov},
     title = {Extremal problems in the~theory of analytic continuation},
     journal = {Sbornik. Mathematics},
     pages = {737--761},
     publisher = {mathdoc},
     volume = {190},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_5_a3/}
}
                      
                      
                    A. Yu. Popov. Extremal problems in the~theory of analytic continuation. Sbornik. Mathematics, Tome 190 (1999) no. 5, pp. 737-761. http://geodesic.mathdoc.fr/item/SM_1999_190_5_a3/
