The $q$-Fourier transformation of $q$-generalized functions
Sbornik. Mathematics, Tome 190 (1999) no. 5, pp. 717-735

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of functions on the lattice generated by the integer powers of $q^2$, $0$. A $q$-analogue of the Fourier transformation is constructed based on the Jackson integral in the space of generalized functions on the lattice.
@article{SM_1999_190_5_a2,
     author = {M. A. Olshanetsky and V.-B. K. Rogov},
     title = {The $q${-Fourier} transformation of $q$-generalized functions},
     journal = {Sbornik. Mathematics},
     pages = {717--735},
     publisher = {mathdoc},
     volume = {190},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_5_a2/}
}
TY  - JOUR
AU  - M. A. Olshanetsky
AU  - V.-B. K. Rogov
TI  - The $q$-Fourier transformation of $q$-generalized functions
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 717
EP  - 735
VL  - 190
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_5_a2/
LA  - en
ID  - SM_1999_190_5_a2
ER  - 
%0 Journal Article
%A M. A. Olshanetsky
%A V.-B. K. Rogov
%T The $q$-Fourier transformation of $q$-generalized functions
%J Sbornik. Mathematics
%D 1999
%P 717-735
%V 190
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_5_a2/
%G en
%F SM_1999_190_5_a2
M. A. Olshanetsky; V.-B. K. Rogov. The $q$-Fourier transformation of $q$-generalized functions. Sbornik. Mathematics, Tome 190 (1999) no. 5, pp. 717-735. http://geodesic.mathdoc.fr/item/SM_1999_190_5_a2/