The $q$-Fourier transformation of $q$-generalized functions
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 190 (1999) no. 5, pp. 717-735
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A study is made of functions on the lattice generated by the integer powers of $q^2$, $0$. A $q$-analogue of the Fourier transformation is constructed based on the Jackson integral in the space of generalized functions on the lattice.
			
            
            
            
          
        
      @article{SM_1999_190_5_a2,
     author = {M. A. Olshanetsky and V.-B. K. Rogov},
     title = {The $q${-Fourier} transformation of $q$-generalized functions},
     journal = {Sbornik. Mathematics},
     pages = {717--735},
     publisher = {mathdoc},
     volume = {190},
     number = {5},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_5_a2/}
}
                      
                      
                    M. A. Olshanetsky; V.-B. K. Rogov. The $q$-Fourier transformation of $q$-generalized functions. Sbornik. Mathematics, Tome 190 (1999) no. 5, pp. 717-735. http://geodesic.mathdoc.fr/item/SM_1999_190_5_a2/
