. A $q$-analogue of the Fourier transformation is constructed based on the Jackson integral in the space of generalized functions on the lattice.
@article{SM_1999_190_5_a2,
author = {M. A. Olshanetsky and V.-B. K. Rogov},
title = {The $q${-Fourier} transformation of $q$-generalized functions},
journal = {Sbornik. Mathematics},
pages = {717--735},
year = {1999},
volume = {190},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_5_a2/}
}
M. A. Olshanetsky; V.-B. K. Rogov. The $q$-Fourier transformation of $q$-generalized functions. Sbornik. Mathematics, Tome 190 (1999) no. 5, pp. 717-735. http://geodesic.mathdoc.fr/item/SM_1999_190_5_a2/
[1] Chryssomalakos Ch., Zumino B., “Integrals and Fourier transforms in the quantum plane”, Salamfest, 1993, 327–346 | MR
[2] Kempf A., Majid S., “Algebraic $q$-integration and Fourier theory on quantum and braided spaces”, J. Math. Phys., 35:12 (1994), 6802–6837 | DOI | MR | Zbl
[3] Koornwinder T. H., Swarttouw R. F., “On $q$-analogues of the Fourier and Hankel transforms”, Trans. Amer. Math. Soc., 333:1 (1992), 445–461 | DOI | MR | Zbl
[4] Askey R., Atakishiyev N. M., Suslov S. K., “An analog of the Fourier transformation for a $q$-harmonic oscillator”, Symmetries in science VI: From the rotation group to quantum algebras, Proceedings of a symposium (Bregenz, Austria, August 2–7, 1992), ed. B. Gruber, Plenum Press, New York, 1993, 57–63 | MR | Zbl
[5] Rahman M., Suslov S., Singular analogue of the Fourier transformation for the Askey–Wilson polynomials, Preprint CRM-1915, 1993 | MR
[6] Askey R., Rahman M., Suslov S., On a general $q$-Fourier transformation with nonsymmetric kernels, Preprint ISSN 0827-3669, 1994 | MR
[7] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Obobschennye funktsii. Vyp. 1, Fizmatgiz, M., 1959
[8] Gasper Dzh., Rakhman M., Bazisnye gipergeometricheskie ryady, Mir, M., 1993 | MR | Zbl