On quotient-varieties with an isolated singularity
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 589-596 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe all simple linear groups $H\subseteq\operatorname{GL}(V)$ such that the quotient variety $V/\!\!/H$ has an isolated singularity.
@article{SM_1999_190_4_a6,
     author = {D. A. Shmel'kin},
     title = {On quotient-varieties with an~isolated singularity},
     journal = {Sbornik. Mathematics},
     pages = {589--596},
     year = {1999},
     volume = {190},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a6/}
}
TY  - JOUR
AU  - D. A. Shmel'kin
TI  - On quotient-varieties with an isolated singularity
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 589
EP  - 596
VL  - 190
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_4_a6/
LA  - en
ID  - SM_1999_190_4_a6
ER  - 
%0 Journal Article
%A D. A. Shmel'kin
%T On quotient-varieties with an isolated singularity
%J Sbornik. Mathematics
%D 1999
%P 589-596
%V 190
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1999_190_4_a6/
%G en
%F SM_1999_190_4_a6
D. A. Shmel'kin. On quotient-varieties with an isolated singularity. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 589-596. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a6/

[1] Kac V. G., Popov V. L., Vinberg E. B., “Sur les groupes algébriques dont l'algèbre des invariants est libre”, C. R. Acad. Sci. Paris. Ser. A, 283 (1976), 875–878 | MR | Zbl

[2] Vinberg E. B., Popov V. L., “Teoriya invariantov”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 55, VINITI, M., 1989, 137–314 | MR

[3] Schwarz G. W., “Representations of simple Lie groups with regular rings of invariants”, Invent. Math., 49 (1978), 167–191 | DOI | MR | Zbl

[4] Shmel'kin D. A., “Non-connected groups with regular algebra of invariants and codimension $1$ Luna strata”, Geom. Dedicata, 72:2 (1998), 189–216 | DOI | MR

[5] Panyushev D. I., “O poluprostykh gruppakh, dopuskayuschikh konechnoe koregulyarnoe rasshirenie”, Funkts. anal. i ego prilozh., 27:3 (1993), 82–84 | MR | Zbl

[6] Luna D., “Slices étales”, Bull. Soc. Math. France, 33 (1973), 81–105 | MR | Zbl

[7] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funkts. anal. i ego prilozh., 6:1 (1972), 51–62 | MR | Zbl

[8] Popov A. M., “Konechnye statsionarnye podgruppy obschego polozheniya prostykh lineinykh grupp Li”, Tr. MMO, 50, URSS, M., 1987, 209–248 | MR | Zbl

[9] Adamovich O. M., Golovina E. O., “Prostye lineinye gruppy, imeyuschie svobodnuyu algebru invariantov”, Vopr. teorii grupp i gomologicheskoi algebry, Yaroslavl, 1979, 3–41 | Zbl

[10] Shmelkin D. A., “O nesvyaznykh prostykh lineinykh gruppakh so svobodnoi algebroi invariantov”, Izv. RAN. Ser. matem., 60:4 (1996), 159–204 | MR | Zbl