Large time asymptotic behaviour of solutions of the complex Landau–Ginzburg equation
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 569-588 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotic behaviour for large time of solutions of the Cauchy problem for the complex Landau–Ginzburg equation is described. The initial data are assumed to be small in the multidimensional case (relative to the space variables), and they can be arbitrary in the one-dimensional case. In both cases the leading term is explicitly presented and an estimate for the remainder in the uniform metric is given.
@article{SM_1999_190_4_a5,
     author = {I. A. Shishmarev and M. Tsutsumi},
     title = {Large time asymptotic behaviour of solutions of the~complex {Landau{\textendash}Ginzburg} equation},
     journal = {Sbornik. Mathematics},
     pages = {569--588},
     year = {1999},
     volume = {190},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a5/}
}
TY  - JOUR
AU  - I. A. Shishmarev
AU  - M. Tsutsumi
TI  - Large time asymptotic behaviour of solutions of the complex Landau–Ginzburg equation
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 569
EP  - 588
VL  - 190
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_4_a5/
LA  - en
ID  - SM_1999_190_4_a5
ER  - 
%0 Journal Article
%A I. A. Shishmarev
%A M. Tsutsumi
%T Large time asymptotic behaviour of solutions of the complex Landau–Ginzburg equation
%J Sbornik. Mathematics
%D 1999
%P 569-588
%V 190
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1999_190_4_a5/
%G en
%F SM_1999_190_4_a5
I. A. Shishmarev; M. Tsutsumi. Large time asymptotic behaviour of solutions of the complex Landau–Ginzburg equation. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 569-588. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a5/

[1] Doering C., Gibbon J. D., Holm D., Nicolaenko B., “Low-dimensional behaviour in the complex Ginzburg–Landau equation”, Nonlinearity, 1 (1988), 279–309 | DOI | MR | Zbl

[2] Yang Y. S., “Boundary value problems of the Ginzburg–Landau equations”, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 355–365 | MR | Zbl

[3] Du Q., “Global existence and uniqueness of solutions of the time-dependent Ginzburg–Landau model for superconductivity”, Appl. Anal., 53 (1994), 1–17 | MR

[4] Tang Qi, Wang S., “Time-dependent Ginzburg–Landau equations of superconductivity”, Phys. D, 88 (1995), 139–166 | DOI | MR | Zbl

[5] Naumkin P. I., Shishmarev I. A., Nonlinear nonlocal equations in the theory of waves, Transl. Math. Monographs, AMS, Providence, 1994 | MR

[6] Naumkin P. I., Shishmarev I. A., “Asimptotika pri $t\to\infty$ reshenii nelineinykh uravnenii s nemalymi nachalnymi vozmuscheniyami”, Matem. zametki, 59:6 (1996), 855–864 | MR | Zbl

[7] Naumkin P. I., Shishmarev I. A., “On properties of solutions of the nonlinear system of equations, I”, Partial differential equations. Models in Physics and Biology, Math. research, 82, Academie Verlag, Berlin, 1994, 235–250 | MR