@article{SM_1999_190_4_a5,
author = {I. A. Shishmarev and M. Tsutsumi},
title = {Large time asymptotic behaviour of solutions of the~complex {Landau{\textendash}Ginzburg} equation},
journal = {Sbornik. Mathematics},
pages = {569--588},
year = {1999},
volume = {190},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a5/}
}
I. A. Shishmarev; M. Tsutsumi. Large time asymptotic behaviour of solutions of the complex Landau–Ginzburg equation. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 569-588. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a5/
[1] Doering C., Gibbon J. D., Holm D., Nicolaenko B., “Low-dimensional behaviour in the complex Ginzburg–Landau equation”, Nonlinearity, 1 (1988), 279–309 | DOI | MR | Zbl
[2] Yang Y. S., “Boundary value problems of the Ginzburg–Landau equations”, Proc. Roy. Soc. Edinburgh Sect. A, 114 (1990), 355–365 | MR | Zbl
[3] Du Q., “Global existence and uniqueness of solutions of the time-dependent Ginzburg–Landau model for superconductivity”, Appl. Anal., 53 (1994), 1–17 | MR
[4] Tang Qi, Wang S., “Time-dependent Ginzburg–Landau equations of superconductivity”, Phys. D, 88 (1995), 139–166 | DOI | MR | Zbl
[5] Naumkin P. I., Shishmarev I. A., Nonlinear nonlocal equations in the theory of waves, Transl. Math. Monographs, AMS, Providence, 1994 | MR
[6] Naumkin P. I., Shishmarev I. A., “Asimptotika pri $t\to\infty$ reshenii nelineinykh uravnenii s nemalymi nachalnymi vozmuscheniyami”, Matem. zametki, 59:6 (1996), 855–864 | MR | Zbl
[7] Naumkin P. I., Shishmarev I. A., “On properties of solutions of the nonlinear system of equations, I”, Partial differential equations. Models in Physics and Biology, Math. research, 82, Academie Verlag, Berlin, 1994, 235–250 | MR