Widths of certain classes of entire functions
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 561-568
Cet article a éte moissonné depuis la source Math-Net.Ru
The asymptotic behaviour of widths of classes of entire functions in the uniform metric on a compact set is studied. A logarithmic asymptotic formula is obtained which contains not only the natural parameters defining the growth at infinity of functions in the class under consideration, but also the capacity of the compact set. Under certain additional conditions a weak asymptotic formula is obtained. An example of the calculation of the strong asymptotics is presented.
@article{SM_1999_190_4_a4,
author = {O. G. Parfenov},
title = {Widths of certain classes of entire functions},
journal = {Sbornik. Mathematics},
pages = {561--568},
year = {1999},
volume = {190},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a4/}
}
O. G. Parfenov. Widths of certain classes of entire functions. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 561-568. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a4/
[1] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[2] Pinkus A., $N$-widths in approximation theory, Springer-Verlag, Berlin, 1985 | MR
[3] Widom H., “Extremal polynomials associated with system of curves in the complex plane”, Adv. in Math., 3:2 (1969), 127–232 | DOI | MR | Zbl
[4] Gaier D., Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR | Zbl
[5] Makarov B. M., Goluzina M. G., Lodkin A. A., Podkorytov A. N., Izbrannye zadachi po veschestvennomu analizu, Nauka, M., 1992 | MR
[6] Parfenov O. G., “Singulyarnye chisla vzveshennogo operatora svertki”, Matem. sb., 133(175):3 (1987), 314–324 | MR | Zbl