Bernstein width of a~class of functions of finite smoothness
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 539-560
Voir la notice de l'article provenant de la source Math-Net.Ru
A weak asymptotic formula is obtained for the Bernstein $n$-width in the space $L_q(I^d)$ of the class $F_p^{l,\omega }(I^d)$ of functions on the cube $I^d$ such that their generalized partial derivatives up to order $l$ belong to $L_p(I^d)$ and the moduli of continuity in the space $L_p(I^d)$ of all their derivatives of order $l$ are majorized by a fixed modulus of continuity $\omega$.
@article{SM_1999_190_4_a3,
author = {S. N. Kudryavtsev},
title = {Bernstein width of a~class of functions of finite smoothness},
journal = {Sbornik. Mathematics},
pages = {539--560},
publisher = {mathdoc},
volume = {190},
number = {4},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a3/}
}
S. N. Kudryavtsev. Bernstein width of a~class of functions of finite smoothness. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 539-560. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a3/