Bernstein width of a~class of functions of finite smoothness
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 539-560

Voir la notice de l'article provenant de la source Math-Net.Ru

A weak asymptotic formula is obtained for the Bernstein $n$-width in the space $L_q(I^d)$ of the class $F_p^{l,\omega }(I^d)$ of functions on the cube $I^d$ such that their generalized partial derivatives up to order $l$ belong to $L_p(I^d)$ and the moduli of continuity in the space $L_p(I^d)$ of all their derivatives of order $l$ are majorized by a fixed modulus of continuity $\omega$.
@article{SM_1999_190_4_a3,
     author = {S. N. Kudryavtsev},
     title = {Bernstein width of a~class of functions of finite smoothness},
     journal = {Sbornik. Mathematics},
     pages = {539--560},
     publisher = {mathdoc},
     volume = {190},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a3/}
}
TY  - JOUR
AU  - S. N. Kudryavtsev
TI  - Bernstein width of a~class of functions of finite smoothness
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 539
EP  - 560
VL  - 190
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_4_a3/
LA  - en
ID  - SM_1999_190_4_a3
ER  - 
%0 Journal Article
%A S. N. Kudryavtsev
%T Bernstein width of a~class of functions of finite smoothness
%J Sbornik. Mathematics
%D 1999
%P 539-560
%V 190
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_4_a3/
%G en
%F SM_1999_190_4_a3
S. N. Kudryavtsev. Bernstein width of a~class of functions of finite smoothness. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 539-560. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a3/