@article{SM_1999_190_4_a2,
author = {L. A. Beklaryan},
title = {On the classification of groups of orientation-preserving homeomorphisms of~$\mathbb R$. {III.} $\omega$-projectively invariant measures},
journal = {Sbornik. Mathematics},
pages = {521--538},
year = {1999},
volume = {190},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a2/}
}
TY - JOUR AU - L. A. Beklaryan TI - On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures JO - Sbornik. Mathematics PY - 1999 SP - 521 EP - 538 VL - 190 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_1999_190_4_a2/ LA - en ID - SM_1999_190_4_a2 ER -
%0 Journal Article %A L. A. Beklaryan %T On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures %J Sbornik. Mathematics %D 1999 %P 521-538 %V 190 %N 4 %U http://geodesic.mathdoc.fr/item/SM_1999_190_4_a2/ %G en %F SM_1999_190_4_a2
L. A. Beklaryan. On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 521-538. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a2/
[1] Beklaryan L. A., “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. I: Invariantnye mery”, Matem. sb., 187:3 (1996), 23–54 | MR | Zbl
[2] Beklaryan L. A., “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. II: Proektivno-invariantnye mery”, Matem. sb., 187:4 (1996), 3–28 | MR | Zbl
[3] Alfors L. V., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR
[4] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl
[5] Hinkkanen A., “The structure of certain quasisymmetric groups”, Mem. Amer. Math. Soc., 83:422 (1990), 85 | MR
[6] Solodov V. V., “Gomeomorfizmy okruzhnosti i sloeniya”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 599–613 | MR | Zbl
[7] Grigorchuk R. I., Kurchanov P. F., “Nekotorye voprosy teorii grupp, svyazannye s geometriei”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 58, VINITI, M., 1990, 191–256 | MR
[8] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1983
[9] Plante I. F., “Foliations with measure preserving holonomy”, Ann. Math., 102 (1975), 327–361 | DOI | MR | Zbl
[10] Plante I. F., “Solvable groups acting on the line”, Trans. Amer. Math. Soc., 278 (1983), 401–414 | DOI | MR | Zbl
[11] Imanishi H., “Structure of codimension 1 foliations without holonomy on manifolds with abelian fundamental group”, J. Math. Kyoto Univ., 19:3 (1979), 481–495 | MR | Zbl
[12] Salhi E., “Sur un théoreme de structure des feuilletages de codimension 1”, C. R. Acad. Sci. Paris. Sér. I Math., 300:18 (1985), 635–638 | MR | Zbl
[13] Salhi E., “Niveau des feuilles”, C. R. Acad. Sci. Paris. Sér. I Math., 301:5 (1985), 219–222 | MR | Zbl
[14] Matsumoto S., “Numerical invariants for semiconjugacy of homeomorphisms of the circle”, Proc. Amer. Math. Soc., 98:1 (1986), 163–168 | DOI | MR | Zbl
[15] Matsumoto S., “Some remarks on foliated $S^1$ bundles”, Invent. Math., 90 (1987), 343–358 | DOI | MR | Zbl
[16] Chys E., “Groupes d'homéomorphismes du cercle et cohomologie borneée, III”, Contemp. Math., 58 (1987), 81–105
[17] Beklaryan L. A., “Struktura faktorgruppy gruppy gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu, po podgruppe, porozhdennoi ob'edineniem stabilizatorov”, Dokl AN, 332:6 (1993), 679–681 | MR | Zbl
[18] Beklaryan L. A., “Kriterii suschestvovaniya proektivno-invariantnoi mery dlya grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu, svyazannyi so strukturoi mnozhestva nepodvizhnykh tochek”, UMN, 51:3 (1996), 179–180 | MR | Zbl
[19] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl