On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 521-538 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

General groups of orientation-preserving homeomorphisms of $\mathbb R$ are investigated. A series of metric invariants are defined for such groups: $\omega$-projectively invariant measures, where $\omega$ is a cardinal number. A theorem on the existence of an $\omega$-projectively invariant measure is formulated, which is a natural generalization of the Bogolyubov–Krylov theorem on the existence of an invariant measure for a circle homeomorphism. For groups with an $\omega$-projectively invariant measure “obstructions” to the existence of a 1-projectively invariant measure are analysed. The approach is based on the study of the topological structure of the set of all fixed points of the elements of the group, the orbits of points in the line, minimal sets, and the combinatorial properties of groups.
@article{SM_1999_190_4_a2,
     author = {L. A. Beklaryan},
     title = {On the classification of groups of orientation-preserving homeomorphisms of~$\mathbb R$. {III.} $\omega$-projectively invariant measures},
     journal = {Sbornik. Mathematics},
     pages = {521--538},
     year = {1999},
     volume = {190},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a2/}
}
TY  - JOUR
AU  - L. A. Beklaryan
TI  - On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 521
EP  - 538
VL  - 190
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_4_a2/
LA  - en
ID  - SM_1999_190_4_a2
ER  - 
%0 Journal Article
%A L. A. Beklaryan
%T On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures
%J Sbornik. Mathematics
%D 1999
%P 521-538
%V 190
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1999_190_4_a2/
%G en
%F SM_1999_190_4_a2
L. A. Beklaryan. On the classification of groups of orientation-preserving homeomorphisms of $\mathbb R$. III. $\omega$-projectively invariant measures. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 521-538. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a2/

[1] Beklaryan L. A., “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. I: Invariantnye mery”, Matem. sb., 187:3 (1996), 23–54 | MR | Zbl

[2] Beklaryan L. A., “K voprosu o klassifikatsii grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu. II: Proektivno-invariantnye mery”, Matem. sb., 187:4 (1996), 3–28 | MR | Zbl

[3] Alfors L. V., Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR

[4] Kornfeld I. P., Sinai Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[5] Hinkkanen A., “The structure of certain quasisymmetric groups”, Mem. Amer. Math. Soc., 83:422 (1990), 85 | MR

[6] Solodov V. V., “Gomeomorfizmy okruzhnosti i sloeniya”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 599–613 | MR | Zbl

[7] Grigorchuk R. I., Kurchanov P. F., “Nekotorye voprosy teorii grupp, svyazannye s geometriei”, Itogi nauki i tekhn. Sovr. probl. matem. Fundam. napr., 58, VINITI, M., 1990, 191–256 | MR

[8] Grinlif F., Invariantnye srednie na topologicheskikh gruppakh i ikh prilozheniya, Mir, M., 1983

[9] Plante I. F., “Foliations with measure preserving holonomy”, Ann. Math., 102 (1975), 327–361 | DOI | MR | Zbl

[10] Plante I. F., “Solvable groups acting on the line”, Trans. Amer. Math. Soc., 278 (1983), 401–414 | DOI | MR | Zbl

[11] Imanishi H., “Structure of codimension 1 foliations without holonomy on manifolds with abelian fundamental group”, J. Math. Kyoto Univ., 19:3 (1979), 481–495 | MR | Zbl

[12] Salhi E., “Sur un théoreme de structure des feuilletages de codimension 1”, C. R. Acad. Sci. Paris. Sér. I Math., 300:18 (1985), 635–638 | MR | Zbl

[13] Salhi E., “Niveau des feuilles”, C. R. Acad. Sci. Paris. Sér. I Math., 301:5 (1985), 219–222 | MR | Zbl

[14] Matsumoto S., “Numerical invariants for semiconjugacy of homeomorphisms of the circle”, Proc. Amer. Math. Soc., 98:1 (1986), 163–168 | DOI | MR | Zbl

[15] Matsumoto S., “Some remarks on foliated $S^1$ bundles”, Invent. Math., 90 (1987), 343–358 | DOI | MR | Zbl

[16] Chys E., “Groupes d'homéomorphismes du cercle et cohomologie borneée, III”, Contemp. Math., 58 (1987), 81–105

[17] Beklaryan L. A., “Struktura faktorgruppy gruppy gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu, po podgruppe, porozhdennoi ob'edineniem stabilizatorov”, Dokl AN, 332:6 (1993), 679–681 | MR | Zbl

[18] Beklaryan L. A., “Kriterii suschestvovaniya proektivno-invariantnoi mery dlya grupp gomeomorfizmov $\mathbb R$, sokhranyayuschikh orientatsiyu, svyazannyi so strukturoi mnozhestva nepodvizhnykh tochek”, UMN, 51:3 (1996), 179–180 | MR | Zbl

[19] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl