Finite-dimensional approximations of the resolvent of an infinite band matrix and continued fractions
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 501-519 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The approximability of the resolvent of an operator induced by a band matrix by the resolvents of its finite-dimensional sections is studied. For bounded perturbations of self-adjoint matrices a positive result is obtained. The convergence domain of the sequence of resolvents can be described in this case in terms of matrices involved in the representation. This result is applied to tridiagonal complex matrices to establish conditions for the convergence of Chebyshev continued fractions on sets in the complex domain. In the particular case of compact perturbations this result is improved and a connection between the poles of the limit function and the eigenvalues of the tridiagonal matrix is established.
@article{SM_1999_190_4_a1,
     author = {D. Barrios and G. L. Lopes and A. Mart{\'\i}nez-Finkelshtein and E. Torrano},
     title = {Finite-dimensional approximations of the~resolvent of an~infinite band matrix and continued fractions},
     journal = {Sbornik. Mathematics},
     pages = {501--519},
     year = {1999},
     volume = {190},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a1/}
}
TY  - JOUR
AU  - D. Barrios
AU  - G. L. Lopes
AU  - A. Martínez-Finkelshtein
AU  - E. Torrano
TI  - Finite-dimensional approximations of the resolvent of an infinite band matrix and continued fractions
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 501
EP  - 519
VL  - 190
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_4_a1/
LA  - en
ID  - SM_1999_190_4_a1
ER  - 
%0 Journal Article
%A D. Barrios
%A G. L. Lopes
%A A. Martínez-Finkelshtein
%A E. Torrano
%T Finite-dimensional approximations of the resolvent of an infinite band matrix and continued fractions
%J Sbornik. Mathematics
%D 1999
%P 501-519
%V 190
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1999_190_4_a1/
%G en
%F SM_1999_190_4_a1
D. Barrios; G. L. Lopes; A. Martínez-Finkelshtein; E. Torrano. Finite-dimensional approximations of the resolvent of an infinite band matrix and continued fractions. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 501-519. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a1/

[1] Akhiezer N. I., Klassicheskaya problema momentov, Fizmatgiz, M., 1961

[2] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[3] Dombrowski J., “Orthogonal polynomials and functional analysis”, Orthogonal polynomials: theory and practice, Proc. NATO ASI (Colombus/OH (USA) 1989), NATO ASI Ser., Ser. C, 294, 1990, 147–161 | MR | Zbl

[4] Allakhverdiev B. P., Guseinov G. Sh., “K spektralnoi teorii dissipativnykh raznostnykh operatorov vtorogo poryadka”, Matem. sb., 180:1 (1989), 101–118 | MR | Zbl

[5] Chihara T. S., An introduction to orthogonal polynomials, Gordon and Breach, New York, 1978 | MR | Zbl

[6] Kato T., Perturbation theory of linear operators, Springer-Verlag, Berlin, 1976 | MR

[7] Kantorovich L. V., Akilov G. P., Functional analysis in normed spaces, Pergamon Press, Oxford, 1964 | MR | Zbl

[8] Magnus A. P., “Toeplitz matrix techniques and convergence of complex weight Padé approximants”, J. Comput. Appl. Math., 19 (1987), 23–38 | MR | Zbl

[9] Van Assche W., “Orthogonal polynomials, associated polynomials and functions of the second kind”, J. Comput. Appl. Math., 37 (1991), 237–249 | DOI | MR | Zbl

[10] Brezinski C., Padé-type approximation and general orthogonal polynomials, Birkhäuser, Basel, 1980 | MR | Zbl

[11] Wilkinson J. H., The algebraic eigenvalue problem, Oxford University Press, Oxford, 1965 | MR | Zbl

[12] Barrios D., López G., Martínez A., Torrano E., “On the domain of convergence and poles of $J$-fractions”, J. Approx. Theory, 93:2 (1998), 177–200 | DOI | MR | Zbl

[13] Gohberg I., Goldberg S., Kaashoek M. A., Classes of linear operators, V. 5, Birkhäuser, Basel, 1990 | MR | Zbl