A property of subspaces admitting spectral synthesis
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 481-499 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H$ be the space of holomorphic functions in a convex domain $G\subset\mathbb C$. The following result is established: each closed subspace $W\subset H$ that is invariant with respect to the operator of differentiation and admits spectral synthesis can be represented as the solution set of two (possibly coinciding) homogeneous convolution equations.
@article{SM_1999_190_4_a0,
     author = {N. F. Abuzyarova},
     title = {A~property of subspaces admitting spectral synthesis},
     journal = {Sbornik. Mathematics},
     pages = {481--499},
     year = {1999},
     volume = {190},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - A property of subspaces admitting spectral synthesis
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 481
EP  - 499
VL  - 190
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/
LA  - en
ID  - SM_1999_190_4_a0
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T A property of subspaces admitting spectral synthesis
%J Sbornik. Mathematics
%D 1999
%P 481-499
%V 190
%N 4
%U http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/
%G en
%F SM_1999_190_4_a0
N. F. Abuzyarova. A property of subspaces admitting spectral synthesis. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 481-499. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/

[1] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. I: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 87 (129):4 (1972), 459–489 | MR

[2] Schwartz L., “Theorie générale des fonctions moyenne-périodique”, Ann. of Math. (2), 48:4 (1947), 857–929 | DOI | MR | Zbl

[3] Euler L., “De integratione aequationum differentialum altiorum gradum”, Miscellanea Berol, 1743, no. 7, 193–242

[4] Gelfond A. O., “Lineinye differentsialnye uravneniya s postoyannymi koeffitsientami i asimptoticheskie periody tselykh funktsii”, Tr. MIAN, 38, Nauka, M., 1951, 42–67 | MR | Zbl

[5] Leontev A. F., Ryady polinomov Dirikhle i ikh obobscheniya, Tr. MIAN, 39, Izd-vo AN SSSR, M., 1951 | MR | Zbl

[6] Leontev A. F., “O predstavlenii funktsii ryadami polinomov Dirikhle”, Matem. sb., 70 (112) (1966), 132–144 | MR | Zbl

[7] Dickson D. G., “Expansions in series of solutions of linear difference-differential and infinite order differential equations with constant coefficients”, Mem. Amer. Math. Soc., 23, 1957 | MR

[8] Dickson D. G., “Analytic mean periodic functions”, Trans. Amer. Math. Soc., 110:2 (1964), 361–374 | DOI | MR | Zbl

[9] Krasichkov-Ternovskii I. F., “Invariantnye podprostranstva analiticheskikh funktsii. II: Spektralnyi sintez na vypuklykh oblastyakh”, Matem. sb., 88 (130):1 (1972), 3–30

[10] Ehrenpreis L., “Mean periodic functions”, Amer. J. Math., 77:2 (1955), 293–326 | DOI | MR

[11] Krasichkov I. F., “O zamknutykh idealakh v lokalno vypuklykh algebrakh tselykh funktsii. I; II”, Izv. AN SSSR. Ser. matem., 31:1 (1967), 37–60 ; Изв. АН СССР. Сер. матем., 32:5 (1968), 1024–1032 | MR | Zbl | MR | Zbl

[12] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[13] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[14] Krasichkov I. F., “Sravnenie tselykh funktsii konechnogo poryadka po raspredeleniyu ikh kornei”, Matem. sb., 70 (112):2 (1966), 198–230 | MR | Zbl