A~property of subspaces admitting spectral synthesis
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 481-499

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be the space of holomorphic functions in a convex domain $G\subset\mathbb C$. The following result is established: each closed subspace $W\subset H$ that is invariant with respect to the operator of differentiation and admits spectral synthesis can be represented as the solution set of two (possibly coinciding) homogeneous convolution equations.
@article{SM_1999_190_4_a0,
     author = {N. F. Abuzyarova},
     title = {A~property of subspaces admitting spectral synthesis},
     journal = {Sbornik. Mathematics},
     pages = {481--499},
     publisher = {mathdoc},
     volume = {190},
     number = {4},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/}
}
TY  - JOUR
AU  - N. F. Abuzyarova
TI  - A~property of subspaces admitting spectral synthesis
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 481
EP  - 499
VL  - 190
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/
LA  - en
ID  - SM_1999_190_4_a0
ER  - 
%0 Journal Article
%A N. F. Abuzyarova
%T A~property of subspaces admitting spectral synthesis
%J Sbornik. Mathematics
%D 1999
%P 481-499
%V 190
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/
%G en
%F SM_1999_190_4_a0
N. F. Abuzyarova. A~property of subspaces admitting spectral synthesis. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 481-499. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/