A~property of subspaces admitting spectral synthesis
Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 481-499
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H$ be the space of holomorphic functions in a convex domain $G\subset\mathbb C$. The following result is established: each closed subspace $W\subset H$ that is invariant with respect to the operator of differentiation and admits spectral synthesis can be represented as the solution set of two (possibly coinciding) homogeneous convolution equations.
@article{SM_1999_190_4_a0,
author = {N. F. Abuzyarova},
title = {A~property of subspaces admitting spectral synthesis},
journal = {Sbornik. Mathematics},
pages = {481--499},
publisher = {mathdoc},
volume = {190},
number = {4},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/}
}
N. F. Abuzyarova. A~property of subspaces admitting spectral synthesis. Sbornik. Mathematics, Tome 190 (1999) no. 4, pp. 481-499. http://geodesic.mathdoc.fr/item/SM_1999_190_4_a0/