Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains
Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 447-479 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new approach (not based on the techniques of barriers) to the study of asymptotic properties of the generalized solutions of parabolic initial boundary-value problems with finite-time blow-up of the boundary values is proposed. Precise conditions on the blow-up pattern are found that guarantee uniform localization of the solution for an arbitrary compactly supported initial function. The main result of the paper consists in obtaining precise sufficient conditions for the singular (or blow-up) set of an arbitrary solution to remain within the boundary of the domain.
@article{SM_1999_190_3_a4,
     author = {A. E. Shishkov and A. G. Shchelkov},
     title = {Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains},
     journal = {Sbornik. Mathematics},
     pages = {447--479},
     year = {1999},
     volume = {190},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_3_a4/}
}
TY  - JOUR
AU  - A. E. Shishkov
AU  - A. G. Shchelkov
TI  - Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 447
EP  - 479
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_3_a4/
LA  - en
ID  - SM_1999_190_3_a4
ER  - 
%0 Journal Article
%A A. E. Shishkov
%A A. G. Shchelkov
%T Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains
%J Sbornik. Mathematics
%D 1999
%P 447-479
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1999_190_3_a4/
%G en
%F SM_1999_190_3_a4
A. E. Shishkov; A. G. Shchelkov. Blow-up boundary regimes for general quasilinear parabolic equations in multidimensional domains. Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 447-479. http://geodesic.mathdoc.fr/item/SM_1999_190_3_a4/

[1] Oleinik O. A., Kalashnikov A. S., Chzhou Yuilin, “Zadacha Koshi i kraevye zadachi dlya uravneniya tipa nestatsionarnoi filtratsii”, Izv. AN SSSR. Ser. matem., 22:5 (1958), 667–704 | MR | Zbl

[2] Aronson D. G., “Regularity properties of flows through porous media”, SIAM J. Appl. Math., 17 (1969), 461–467 | DOI | MR | Zbl

[3] Gilding B. H., “Continuity of generalized solutions of the Cauchy problem for the porous medium equation”, J. London Math. Soc. (2), 13 (1976), 103–106 | DOI | MR | Zbl

[4] Barenblatt G. I., “O nekotorykh neustanovivshikhsya dvizheniyakh zhidkosti i gaza v poristoi srede”, Prikladnaya matem. i mekh., 16:2 (1952), 67–78 | MR | Zbl

[5] Barenblatt G. I., Vishik M. I., “O konechnoi skorosti rasprostraneniya v zadachakh nestatsionarnoi filtratsii zhidkosti i gaza”, Prikladnaya matem. i mekh., 20:3 (1956), 411–417 | MR | Zbl

[6] Likht M. K., “O rasprostranenii vozmuschenii v zadachakh, svyazannykh s vyrozhdayuschimisya kvazilineinymi uravneniyami parabolicheskogo tipa”, Differents. uravneniya, 2:7 (1966), 953–957 | MR | Zbl

[7] Zeldovich Ya. B., Kompaneets A. S., “K teorii rasprostraneniya tepla pri teploprovodnosti, zavisyaschei ot temperatury”, Sb. posvyasch. 70-letiyu A. F. Ioffe, Nauka, M., 1950, 61–72

[8] Caffarelli L. A., Friedman A., “Regularity of the free boundary for the one-dimensional flow of gas in a porous medium”, Amer. J. Math., 101 (1979), 1193–1218 | DOI | MR | Zbl

[9] Gilding B. H., Herrero M. A., “Localization and blow-up of thermal waves in nonlinear heat condaction”, Math. Ann., 282 (1988), 223–242 | DOI | MR | Zbl

[10] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[11] Galaktionov V. A., Samarskii A. A., “Metody postroeniya priblizhennykh avtomodelnykh reshenii nelineinykh uravnenii teploprovodnosti, I”, Matem. sb., 118:3 (1982), 291–322 | MR | Zbl

[12] Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Samarskii A. A., “Asimptoticheskaya stadiya rezhimov s obostreniem i effektivnaya lokalizatsiya tepla v zadachakh nelineinoi teploprovodnosti”, Differents. uravneniya, 16:7 (1980), 1196–1204 | MR | Zbl

[13] Cortazar C., Elgueta M., “Localization and boundedness of the solutions of the Neumann problem for a filtration equation”, Nonlinear Anal., 13:1 (1989), 33–41 | DOI | MR | Zbl

[14] Antontsev S. N., “O lokalizatsii reshenii nelineinykh vyrozhdayuschikhsya ellipticheskikh i parabolicheskikh uravnenii”, Dokl. AN SSSR, 260:6 (1981), 1289–1293 | MR | Zbl

[15] Diaz J. I., Veron L., “Local vanishing properties of solutions of elliptic and parabolic quasilinear equations”, Trans. Amer. Math. Soc., 290:2 (1985), 787–814 | DOI | MR | Zbl

[16] Oleinik O. A., Iosifyan G. A., “Analogi printsipa Sen-Venana i edinstvennost reshenii parabolicheskikh granichnykh zadach v neogranichennykh oblastyakh”, UMN, 31:6 (1976), 142–166 | MR | Zbl

[17] Akulov V. F., Shishkov A. E., “Ob asimptoticheskikh svoistvakh reshenii smeshannykh zadach dlya kvazilineinykh parabolicheskikh uravnenii v neogranichennykh oblastyakh”, Matem. sb., 182:8 (1991), 1200–1210 | MR

[18] Alt H. W., Luckhaus S., “Quasilinear elliptic-parabolic differential equations”, Math. Z., 183 (1983), 311–341 | DOI | MR | Zbl

[19] Benilan Ph., Wittbold P., “On mild and weak solutions of elliptic-parabolic problems”, Adv. Differential Equations, 1:6 (1996), 1053–1073 | MR | Zbl