Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation
Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 427-446
Voir la notice de l'article provenant de la source Math-Net.Ru
Sequences of measure-valued solutions of a non-degenerate quasilinear equation of the first order are shown to be strongly precompact in the general case, when the flow functions contain independent variables and are merely continuous.
@article{SM_1999_190_3_a3,
author = {E. Yu. Panov},
title = {Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation},
journal = {Sbornik. Mathematics},
pages = {427--446},
publisher = {mathdoc},
volume = {190},
number = {3},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/}
}
TY - JOUR AU - E. Yu. Panov TI - Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation JO - Sbornik. Mathematics PY - 1999 SP - 427 EP - 446 VL - 190 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/ LA - en ID - SM_1999_190_3_a3 ER -
E. Yu. Panov. Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation. Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 427-446. http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/