Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation
Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 427-446

Voir la notice de l'article provenant de la source Math-Net.Ru

Sequences of measure-valued solutions of a non-degenerate quasilinear equation of the first order are shown to be strongly precompact in the general case, when the flow functions contain independent variables and are merely continuous.
@article{SM_1999_190_3_a3,
     author = {E. Yu. Panov},
     title = {Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation},
     journal = {Sbornik. Mathematics},
     pages = {427--446},
     publisher = {mathdoc},
     volume = {190},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 427
EP  - 446
VL  - 190
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/
LA  - en
ID  - SM_1999_190_3_a3
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation
%J Sbornik. Mathematics
%D 1999
%P 427-446
%V 190
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/
%G en
%F SM_1999_190_3_a3
E. Yu. Panov. Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation. Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 427-446. http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/