@article{SM_1999_190_3_a3,
author = {E. Yu. Panov},
title = {Property of strong precompactness for bounded sets of measure-valued solutions of a~first-order quasilinear equation},
journal = {Sbornik. Mathematics},
pages = {427--446},
year = {1999},
volume = {190},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/}
}
TY - JOUR AU - E. Yu. Panov TI - Property of strong precompactness for bounded sets of measure-valued solutions of a first-order quasilinear equation JO - Sbornik. Mathematics PY - 1999 SP - 427 EP - 446 VL - 190 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/ LA - en ID - SM_1999_190_3_a3 ER -
E. Yu. Panov. Property of strong precompactness for bounded sets of measure-valued solutions of a first-order quasilinear equation. Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 427-446. http://geodesic.mathdoc.fr/item/SM_1999_190_3_a3/
[1] Tartar L., “Compensated compactness and applications to partial differential equations”, Nonlinear analysis and mechanics, Heriot-Watt Symp., Vol. 4 (Edinburgh, 1979), Res. Notes Math., 39, 1979, 136–212 | MR | Zbl
[2] Panov E. Yu., “O posledovatelnostyakh meroznachnykh reshenii kvazilineinogo uravneniya pervogo poryadka”, Matem. sb., 185:2 (1994), 87–106 | MR | Zbl
[3] Panov E. Yu., “O silnoi predkompaktnosti ogranichennykh mnozhestv meroznachnykh reshenii kvazilineinogo uravneniya pervogo poryadka”, Matem. sb., 186:5 (1995), 103–114 | MR | Zbl
[4] Lions P. L., Perthame B., Tadmor E., “A kinetic formulation of multidimensional scalar conservation laws and related equations”, J. Amer. Math. Soc., 7:1 (1994), 169–191 | DOI | MR | Zbl
[5] Kruzhkov S. N., “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 187:1 (1969), 29–32 | Zbl
[6] Kruzhkov S. N., “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81:2 (1970), 228–255 | MR | Zbl
[7] DiPerna R. J., “Measure-valued solutions to conservation laws”, Arch. Rational Mech. Anal., 88 (1985), 223–270 | DOI | MR | Zbl
[8] Dakoronya B., “Slabaya nepreryvnost i slabaya polunepreryvnost snizu nelineinykh funktsionalov”, UMN, 44:4 (1989), 35–98 | MR
[9] Tartar L., “$H$-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations”, Proc. Roy. Soc. Edinburgh. Sect. A, 115:3–4 (1990), 193–230 | MR | Zbl
[10] Berg I., Lefstrem I., Interpolyatsionnye prostranstva, Mir, M., 1980 | MR