Realization of smooth functions on surfaces as height functions
Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 349-405

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion describing all functions with finitely many critical points on two-dimensional surfaces that can be height functions corresponding to some immersions of the surface in three-dimensional Euclidean space is established. It is proved that each smooth deformation of a Morse function on the surface can be realized as the deformation of the height function induced by a suitable deformation of the immersion of the surface in $\mathbb R^3$. A new proof of the well-known result on the path connectedness of the space of all smooth immersions of a two-dimensional sphere in $\mathbb R^3$ obtained. A new description of an eversion of a two-dimensional sphere in $\mathbb R^3$ is given. Generalizations of S. Matveev's result on the connectedness of the space of Morse functions with fixed numbers of minima and maxima on a closed surface are established.
@article{SM_1999_190_3_a1,
     author = {E. A. Kudryavtseva},
     title = {Realization of smooth functions on surfaces as height functions},
     journal = {Sbornik. Mathematics},
     pages = {349--405},
     publisher = {mathdoc},
     volume = {190},
     number = {3},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_3_a1/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - Realization of smooth functions on surfaces as height functions
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 349
EP  - 405
VL  - 190
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_3_a1/
LA  - en
ID  - SM_1999_190_3_a1
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T Realization of smooth functions on surfaces as height functions
%J Sbornik. Mathematics
%D 1999
%P 349-405
%V 190
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_3_a1/
%G en
%F SM_1999_190_3_a1
E. A. Kudryavtseva. Realization of smooth functions on surfaces as height functions. Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 349-405. http://geodesic.mathdoc.fr/item/SM_1999_190_3_a1/