Realization of smooth functions on surfaces as height functions
Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 349-405 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A criterion describing all functions with finitely many critical points on two-dimensional surfaces that can be height functions corresponding to some immersions of the surface in three-dimensional Euclidean space is established. It is proved that each smooth deformation of a Morse function on the surface can be realized as the deformation of the height function induced by a suitable deformation of the immersion of the surface in $\mathbb R^3$. A new proof of the well-known result on the path connectedness of the space of all smooth immersions of a two-dimensional sphere in $\mathbb R^3$ obtained. A new description of an eversion of a two-dimensional sphere in $\mathbb R^3$ is given. Generalizations of S. Matveev's result on the connectedness of the space of Morse functions with fixed numbers of minima and maxima on a closed surface are established.
@article{SM_1999_190_3_a1,
     author = {E. A. Kudryavtseva},
     title = {Realization of smooth functions on surfaces as height functions},
     journal = {Sbornik. Mathematics},
     pages = {349--405},
     year = {1999},
     volume = {190},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_3_a1/}
}
TY  - JOUR
AU  - E. A. Kudryavtseva
TI  - Realization of smooth functions on surfaces as height functions
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 349
EP  - 405
VL  - 190
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_3_a1/
LA  - en
ID  - SM_1999_190_3_a1
ER  - 
%0 Journal Article
%A E. A. Kudryavtseva
%T Realization of smooth functions on surfaces as height functions
%J Sbornik. Mathematics
%D 1999
%P 349-405
%V 190
%N 3
%U http://geodesic.mathdoc.fr/item/SM_1999_190_3_a1/
%G en
%F SM_1999_190_3_a1
E. A. Kudryavtseva. Realization of smooth functions on surfaces as height functions. Sbornik. Mathematics, Tome 190 (1999) no. 3, pp. 349-405. http://geodesic.mathdoc.fr/item/SM_1999_190_3_a1/

[1] Milnor Dzh., Teoriya Morsa, Mir, M., 1971 | MR | Zbl

[2] Fomenko A. T., “Simplekticheskaya topologiya vpolne integriruemykh gamiltonovykh sistem”, UMN, 44:1 (1989), 145–173 | MR

[3] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR

[4] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 | MR | Zbl

[5] Bolsinov A. V., Fomenko A. T., Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR

[6] Nguyen T. Z., Arnold–Liouville with singularities, Preprint, Ref. S. I. S. S. A. 153/94/M, October 1994, revised January 1995

[7] Nguen T. Z., The symplectic topology of integrable Hamiltonian systems, Thèse, Université de Strasbourg, 1994

[8] Milnor J., “Sommes des variétés différentiables et structures différentiables des sphères”, Bull. Soc. Math. France, 87 (1959), 439–444 | MR | Zbl

[9] Rosen R., “A weak form of the star conjecture for manifolds”, Abstract 570–28, Notices Amer. Math. Soc., 7, 1960, 380

[10] Burlet O., Haab V., “Réalisations de fonctions de Morse sur des surfaces, par des immersions et plongements dans l'espace $\mathbb R^3$”, C. R. Acad. Sci. Paris. Sér. I Math., 300:12 (1985), 401–406 | MR | Zbl

[11] Natanzon S. M., “Topologiya dvumernykh nakrytii i meromorfnye funktsii na veschestvennykh i kompleksnykh algebraicheskikh krivykh. I; II”, Trudy seminara po vektornomu i tenzornomu analizu, 1988, no. 23, 79–103 ; Труды семинара по векторному и тензорному анализу, 1991, No 24, 104–132 | MR | Zbl | MR | Zbl

[12] Smale S., “The classification of immersions of the spheres in Euclidean spaces”, Ann. of Math. (2), 69:2 (1959), 327–344 | DOI | MR | Zbl

[13] Hirsh M., “Immersions of manifolds”, Trans. Amer. Math. Soc., 93 (1959), 242–276 | DOI | MR

[14] Gromov M., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990 | MR

[15] Whitney H., “On regular closed curves in the plane”, Compositio Math., 4 (1937), 276–284 | MR | Zbl

[16] Milnor Dzh., Uolles A., Differentsialnaya topologiya. Nachalnyi kurs, Mir, M., 1972 | MR | Zbl

[17] Tsishang Kh., Poverkhnosti i razryvnye gruppy, Nauka, M., 1988 | MR

[18] Francis G. K., Morin B., “Arnold Shapiro's eversion of the sphere”, Math. Intelligencer, 1979, no. 2, 200–203 | MR

[19] Fransis Dzh., Knizhka s kartinkami po topologii, Mir, M., 1991 | MR

[20] Wall C. T. C., “Formal deformations”, Proc. London Math. Soc. (3), 16 (1966), 342–352 | DOI | MR | Zbl