Paley problem for plurisubharmonic functions of finite lower order
Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 309-321
Voir la notice de l'article provenant de la source Math-Net.Ru
For plurisubharmonic functions $\mathbb C^n$ of lower order $\lambda+\infty$ estimates of the growth of their maximum value on the sphere of radius $r$ with centre at the origin in terms of the growth of the Nevanlinna characteristics $T(r,u)$ are obtained. These estimates are best possible for $\lambda\leqslant 1$. The results are new even in the case of functions of the form $u=\log|f|$, where $f$ is an entire function in $\mathbb C^n$, $n>1$.
@article{SM_1999_190_2_a6,
author = {B. N. Khabibullin},
title = {Paley problem for plurisubharmonic functions of finite lower order},
journal = {Sbornik. Mathematics},
pages = {309--321},
publisher = {mathdoc},
volume = {190},
number = {2},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_2_a6/}
}
B. N. Khabibullin. Paley problem for plurisubharmonic functions of finite lower order. Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 309-321. http://geodesic.mathdoc.fr/item/SM_1999_190_2_a6/