Paley problem for plurisubharmonic functions of finite lower order
Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 309-321

Voir la notice de l'article provenant de la source Math-Net.Ru

For plurisubharmonic functions $\mathbb C^n$ of lower order $\lambda+\infty$ estimates of the growth of their maximum value on the sphere of radius $r$ with centre at the origin in terms of the growth of the Nevanlinna characteristics $T(r,u)$ are obtained. These estimates are best possible for $\lambda\leqslant 1$. The results are new even in the case of functions of the form $u=\log|f|$, where $f$ is an entire function in $\mathbb C^n$, $n>1$.
@article{SM_1999_190_2_a6,
     author = {B. N. Khabibullin},
     title = {Paley problem for plurisubharmonic functions of finite lower order},
     journal = {Sbornik. Mathematics},
     pages = {309--321},
     publisher = {mathdoc},
     volume = {190},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_2_a6/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Paley problem for plurisubharmonic functions of finite lower order
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 309
EP  - 321
VL  - 190
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_2_a6/
LA  - en
ID  - SM_1999_190_2_a6
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Paley problem for plurisubharmonic functions of finite lower order
%J Sbornik. Mathematics
%D 1999
%P 309-321
%V 190
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_2_a6/
%G en
%F SM_1999_190_2_a6
B. N. Khabibullin. Paley problem for plurisubharmonic functions of finite lower order. Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 309-321. http://geodesic.mathdoc.fr/item/SM_1999_190_2_a6/