Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations
Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 285-307

Voir la notice de l'article provenant de la source Math-Net.Ru

Several necessary and sufficient conditions for the existence of uniform or $C^1$-approximation of functions on compact subsets of $\mathbb R^2$ by solutions of elliptic systems of the form $c_{11}u_{x_1x_1}+2c_{12}u_{x_1x_2}+c_{22}u_{x_2x_2}=0$ with constant complex coefficients $c_{11}$, $c_{12}$ and $c_{22}$ are obtained. The proofs are based on a refinement of Vitushkin's localization method, in which one constructs localized approximating functions by “gluing together” some special many-valued solutions of the above equations. The resulting conditions of approximation are of a topological and metric nature.
@article{SM_1999_190_2_a5,
     author = {P. V. Paramonov and K. Yu. Fedorovskiy},
     title = {Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations},
     journal = {Sbornik. Mathematics},
     pages = {285--307},
     publisher = {mathdoc},
     volume = {190},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_2_a5/}
}
TY  - JOUR
AU  - P. V. Paramonov
AU  - K. Yu. Fedorovskiy
TI  - Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 285
EP  - 307
VL  - 190
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_2_a5/
LA  - en
ID  - SM_1999_190_2_a5
ER  - 
%0 Journal Article
%A P. V. Paramonov
%A K. Yu. Fedorovskiy
%T Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations
%J Sbornik. Mathematics
%D 1999
%P 285-307
%V 190
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_2_a5/
%G en
%F SM_1999_190_2_a5
P. V. Paramonov; K. Yu. Fedorovskiy. Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations. Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 285-307. http://geodesic.mathdoc.fr/item/SM_1999_190_2_a5/