Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations
Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 285-307
Voir la notice de l'article provenant de la source Math-Net.Ru
Several necessary and sufficient conditions for the existence of uniform or $C^1$-approximation of functions on compact subsets of $\mathbb R^2$ by solutions of elliptic systems of the form $c_{11}u_{x_1x_1}+2c_{12}u_{x_1x_2}+c_{22}u_{x_2x_2}=0$ with constant complex coefficients $c_{11}$, $c_{12}$ and $c_{22}$ are obtained. The proofs are based on a refinement of Vitushkin's localization method, in which one constructs localized approximating functions by “gluing together” some special many-valued solutions of the above equations. The resulting conditions of approximation are of a topological and metric nature.
@article{SM_1999_190_2_a5,
author = {P. V. Paramonov and K. Yu. Fedorovskiy},
title = {Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations},
journal = {Sbornik. Mathematics},
pages = {285--307},
publisher = {mathdoc},
volume = {190},
number = {2},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_2_a5/}
}
TY - JOUR AU - P. V. Paramonov AU - K. Yu. Fedorovskiy TI - Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations JO - Sbornik. Mathematics PY - 1999 SP - 285 EP - 307 VL - 190 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1999_190_2_a5/ LA - en ID - SM_1999_190_2_a5 ER -
%0 Journal Article %A P. V. Paramonov %A K. Yu. Fedorovskiy %T Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations %J Sbornik. Mathematics %D 1999 %P 285-307 %V 190 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1999_190_2_a5/ %G en %F SM_1999_190_2_a5
P. V. Paramonov; K. Yu. Fedorovskiy. Uniform and $C^1$-approximability of functions on compact subsets of $\mathbb R^2$ by solutions of second-order elliptic equations. Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 285-307. http://geodesic.mathdoc.fr/item/SM_1999_190_2_a5/