Conformal geometry of symmetric spaces and generalized linear-fractional maps of Krein–Shmul'yan
Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 255-283 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The matrix balls $\mathrm B_{p,q}$ consisting of $p\times q$-matrices of norm $<1$ over $\mathbb C$ are considered. These balls are one possible realization of the symmetric spaces $\mathrm B_{p,q}=\operatorname U(p,q)/\operatorname U(p)\times\operatorname U(q)$. Generalized linear-fractional maps are maps $\mathrm B_{p,q}\to\mathrm B_{r,s}$ of the form $Z\mapsto K+LZ(1-NZ)^{-1}$ (they are in general neither injective nor surjective). Characterizations of generalized linear-fractional maps in the spirit of the “fundamental theorem of projective geometry” are obtained: for a certain family of submanifolds of $\mathrm B_{p,q}$ (“quasilines”) it is shown that maps taking quasilines to quasilines are generalized linear-fractional. In addition, for the standard field of cones on $\mathrm B_{p,q}$ (described by the inequality $\operatorname{rk}dZ\leqslant 1$) it is shown that maps taking cones to cones are generalized linear-fractional.
@article{SM_1999_190_2_a4,
     author = {Yu. A. Neretin},
     title = {Conformal geometry of symmetric spaces and generalized linear-fractional maps of {Krein{\textendash}Shmul'yan}},
     journal = {Sbornik. Mathematics},
     pages = {255--283},
     year = {1999},
     volume = {190},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_2_a4/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Conformal geometry of symmetric spaces and generalized linear-fractional maps of Krein–Shmul'yan
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 255
EP  - 283
VL  - 190
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_2_a4/
LA  - en
ID  - SM_1999_190_2_a4
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Conformal geometry of symmetric spaces and generalized linear-fractional maps of Krein–Shmul'yan
%J Sbornik. Mathematics
%D 1999
%P 255-283
%V 190
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1999_190_2_a4/
%G en
%F SM_1999_190_2_a4
Yu. A. Neretin. Conformal geometry of symmetric spaces and generalized linear-fractional maps of Krein–Shmul'yan. Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 255-283. http://geodesic.mathdoc.fr/item/SM_1999_190_2_a4/

[1] Potapov V. P., “Multiplikativnaya struktura $J$-nerastyagivayuschei matrichnoi funktsii”, Tr. MMO, 4, URSS, M., 1955, 125–236 | MR | Zbl

[2] Krein M. G., Shmulyan Yu. L., “O drobno-lineinykh preobrazovaniyakh s operatornymi koeffitsientami”, Matem. issledovaniya, 2:3 (1967), 64–96 | MR | Zbl

[3] Shmulyan Yu. L., “Teoriya lineinykh otnoshenii i prostranstva s indefinitnoi metrikoi”, Funkts. analiz i ego prilozh., 10:1 (1976), 67–72 | MR | Zbl

[4] Shmulyan Yu. L., “Obschie drobno-lineinye preobrazovaniya operatornykh sharov”, Sib. matem. zhurn., 19:2 (1978), 418–425 | MR | Zbl

[5] Neretin Yu. A., “Prodolzhenie predstavlenii klassicheskikh grupp do predstavlenii kategorii”, Algebra i analiz, 3:1 (1991), 176–202 | MR

[6] Olshanskii G. I., Polugruppa operatorov s gaussovymi yadrami, Preprint, 1984 | MR

[7] Howe R., “The oscillator semigroup”, Proc. Sympos. Pure Math., 48 (1988), 61–131 | MR

[8] Neretin Yu. A., “Integral operators with Gaussian kernels and symmetries of canonical commutation relations”, Trans. Amer. Math. Soc., 175 (1996), 97–135 | MR | Zbl

[9] Neretin Yu. A., Categories of symmetries and infinite dimensional groups, Clarendon Press, Oxford, 1996 | MR | Zbl

[10] Khatskevich V. A., “O metrike Puankare na operatornom share”, Funkts. analiz i ego prilozh., 17:4 (1983), 92–93 | MR | Zbl

[11] Goncharov A. V., “Infinitizimalnye struktury, svyazannye s ermitovymi simmetricheskimi prostranstvami”, Funkts. analiz i ego prilozh., 15:3 (1981), 83–84 | MR | Zbl

[12] Goncharov A. B., “Generalized conformal structures on manifolds”, Selecta. Math. Soviet., 6 (1987), 306–340 | MR

[13] Gindikin S. G., “Generalized conformal structures on classical Lie groups and related problems of theory of representations”, C. R. Acad. Sci. Paris. Sér. I Math., 315:6 (1992), 675–679 | MR | Zbl

[14] Bertram W., “Un theoreme de Liouville pour les algebres de Jordan”, Bull. Soc. Math. France, 124:2 (1996), 299–327 | MR | Zbl

[15] Chow W. L., “On the geometry of algebraic homogeneous spaces”, Ann. of Math., 50 (1949), 32–67 | DOI | MR | Zbl

[16] Hua Loo Keng, “Geometry of matrices. I: Generalizations of fon Staudt's theorem”, Trans. Amer. Math. Soc., 57 (1945), 441–481 | DOI | MR

[17] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974 | MR

[18] Takeuchi M., “Basic transformations of symmetric $R$-spaces”, Osaka J. Math., 25 (1988), 259–297 | MR | Zbl

[19] Hua Loo Keng, Selected papers, Spinger-Verlag, New York, 1983

[20] Cartan E., “Les groupes de transformations continues, infinis, simples”, Ann. Sci. École Norm. Sup., 26 (1909), 93–166 | MR

[21] Olshanskii G. I., “Invariantnye konusy v algebrakh Li, polugruppy Li i golomorfnye diskretnye serii”, Funkts. analiz i ego prilozh., 15:4 (1981), 53–66 | MR