Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. II
Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 205-231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solution of the problem of diffraction of an acoustic plane wave by a periodic boundary for frequencies close to threshold values is studied. It is shown that if the periodic structure has some special geometry, then the transformations of the diffraction pattern (Wood's anomalies) are accompanied by the occurrence of surface waves. Substantiation of asymptotic formulae (in particular, the ones in [1]) is carried out on the basis of the techniques of equivalent weighted norms in Sobolev spaces.
@article{SM_1999_190_2_a2,
     author = {I. V. Kamotskii and S. A. Nazarov},
     title = {Wood's anomalies and surface waves in the problem of scattering by a~periodic {boundary.~II}},
     journal = {Sbornik. Mathematics},
     pages = {205--231},
     year = {1999},
     volume = {190},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_2_a2/}
}
TY  - JOUR
AU  - I. V. Kamotskii
AU  - S. A. Nazarov
TI  - Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. II
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 205
EP  - 231
VL  - 190
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_2_a2/
LA  - en
ID  - SM_1999_190_2_a2
ER  - 
%0 Journal Article
%A I. V. Kamotskii
%A S. A. Nazarov
%T Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. II
%J Sbornik. Mathematics
%D 1999
%P 205-231
%V 190
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1999_190_2_a2/
%G en
%F SM_1999_190_2_a2
I. V. Kamotskii; S. A. Nazarov. Wood's anomalies and surface waves in the problem of scattering by a periodic boundary. II. Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 205-231. http://geodesic.mathdoc.fr/item/SM_1999_190_2_a2/

[1] Kamotskii I. V., Nazarov S. A., “Anomalii Vuda i poverkhnostnye volny v zadache rasseyaniya na periodicheskoi granitse, I”, Matem. sb., 190:1 (1998), 109–138 | MR

[2] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, URSS, M., 1967, 209–292 | MR | Zbl

[3] Mazja W. G., Nasarov S. A., Plamenewski B. A., Asymptotishe Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten, V. 1, Akademie-Verlag, Berlin, 1990

[4] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[5] Babich V. M., “O teoreme suschestvovaniya resheniya zadach Dirikhle i Neimana dlya uravneniya Gelmgoltsa v kvaziperiodicheskom sluchae”, Sib. matem. zhurn., 29:2 (1988), 3–9 | MR

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[7] Nasarov S. A., Plamenewski B. A., Elliptic problems in domains with piecewise smooth boundaries, Walter de Gruyter, Berlin, 1994 | MR

[8] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991