@article{SM_1999_190_2_a0,
author = {O. Yu. Aristov},
title = {On the homotopy equivalence of simple {AI-algebras}},
journal = {Sbornik. Mathematics},
pages = {165--191},
year = {1999},
volume = {190},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_2_a0/}
}
O. Yu. Aristov. On the homotopy equivalence of simple AI-algebras. Sbornik. Mathematics, Tome 190 (1999) no. 2, pp. 165-191. http://geodesic.mathdoc.fr/item/SM_1999_190_2_a0/
[1] Elliott G. A., “A classification of certain simple $C^*$-algebras”, Quantum and Non-commutative Analysis, eds. H. Araki et al., Kluwer, Dordrecht, 1993, 373–385 | MR | Zbl
[2] Elliott G. A., “On the classification of inductive limits of semisimple finite-dimensional algebras”, J. Algebra, 38 (1976), 29–44 | DOI | MR | Zbl
[3] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997
[4] Elliott G. A., “The classification problem for amenable $C^*$-algebras”, Proc. International Congress of Mathematicians, ICM '94, V. 2 (August 3–11, 1994, Zürich, Switzerland), ed. S. D. Chatterji, Birkhäuser, Basel, 1995, 922–932 | MR | Zbl
[5] Blackadar B., $\mathrm K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, 5, Springer-Verlag, New York, 1986 | MR | Zbl
[6] Thomsen K., “Inductive limits of interval algebras: the tracial state space”, Amer. J. Math., 116 (1994), 605–620 | DOI | MR | Zbl
[7] Thomsen K., “On the range of the Elliott invariant”, J. Funct. Anal., 221 (1994), 255–274 | DOI | MR
[8] Villadsen J., “The range of the Elliott invariant”, J. Reine Angew. Math., 462 (1995), 31–55 | MR | Zbl
[9] Elliott G. A., “On the classification of $C^*$-algebras real rank zero”, J. Reine Angew. Math., 443 (1993), 179–219 | MR | Zbl
[10] Manuilov V. M., “Diagonalizatsiya operatorov nad nepreryvnymi polyami $C^*$-algebr”, Matem. sb., 188:6 (1997), 99–118 | MR | Zbl
[11] Manuilov V. M., “O pochti kommutiruyuschikh operatorakh”, Funkts. analiz i ego prilozh., 31:3 (1997), 80–82 | MR | Zbl
[12] Bratteli U., Robinson D., Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl
[13] Diksme Zh., $C^*$-algebry i ikh predstavleniya, Nauka, M., 1974 | MR
[14] Khelemskii A. Ya., Banakhovy i polinormirovannye algebry. Obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR
[15] Choi M.-D., Elliott G. A., “Density of the self-adjoint elements with finite spectrum in an irrational rotation $C^*$-algebra”, Math. Scand., 67 (1990), 73–86 | MR | Zbl
[16] Davidson K., “Almost commuting hermitian matrices”, Math. Scand., 56 (1985), 222–241 | MR
[17] Kishimoto A., Kumjian A., “The Ext class of an approximately inner automorphism”, Trans. Amer. Math. Soc., 350:10 (1998), 4127–4148 | DOI | MR | Zbl
[18] Glimm J., “On a certain class of operator algebras”, Trans. Amer. Math. Soc., 95 (1960), 318–340 | DOI | MR | Zbl
[19] Bratteli O., Kishimoto A., “Noncommutative spheres. III: Irrational rotations”, Comm. Math. Phys., 147 (1992), 605–624 | DOI | MR | Zbl
[20] Thomsen K., “On isomorphisms of inductive limit $C^*$-algebras”, Proc. Amer. Math. Soc., 113 (1991), 947–953 | DOI | MR | Zbl
[21] Elliott G. A., Gong G., “On inductive limits of matrix algebras over two-torus”, Amer. J. Math., 118 (1996), 263–290 | DOI | MR | Zbl
[22] Thomsen K., “From traces to states on the $\mathrm K_0$ group of a simple $C^*$-algebra”, Bull. London Math. Soc., 28 (1996), 66–72 | DOI | MR | Zbl
[23] Blackadar B., “Shape theory for $C^*$-algebras”, Math. Scand., 56 (1985), 249–275 | MR | Zbl
[24] Loring T., “Stable relations. II: Corona semiprojectivity and dimension drop $C^*$-algebras”, Pacific J. Math., 172 (1996), 461–475 | MR | Zbl
[25] Loring T., “$C^*$-algebras generated by stable relations”, J. Funct. Anal., 112 (1993), 159–203 | DOI | MR | Zbl
[26] Blackadar B., Rordam M., “Extending states on preodered semigroups and the exsistence of quasitraces on $C^*$-algebras”, J. Algebra, 152 (1992), 240–247 | DOI | MR | Zbl
[27] Effros E. G., Handelman D. E., Shen C.-L., “Dimension groups and their affine representation”, Amer. J. Math., 102 (1980), 385–407 | DOI | MR | Zbl