Schwartzian derivative for multidimensional maps and flows
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 143-164

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of Schwartzian derivative to maps and flows in the space $\mathbb R^n$ and in infinite-dimensional spaces is introduced. It is used to study the type of stability loss (soft or hard) for fixed points and periodic trajectories of diffeo-morphisms and flows. In particular, an example of a partial differential equation of reaction-diffusion type is presented for which the conditions of soft loss of stability of a spatially homogeneous solution are verified.
@article{SM_1999_190_1_a4,
     author = {E. A. Sataev},
     title = {Schwartzian derivative for multidimensional maps and flows},
     journal = {Sbornik. Mathematics},
     pages = {143--164},
     publisher = {mathdoc},
     volume = {190},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Schwartzian derivative for multidimensional maps and flows
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 143
EP  - 164
VL  - 190
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/
LA  - en
ID  - SM_1999_190_1_a4
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Schwartzian derivative for multidimensional maps and flows
%J Sbornik. Mathematics
%D 1999
%P 143-164
%V 190
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/
%G en
%F SM_1999_190_1_a4
E. A. Sataev. Schwartzian derivative for multidimensional maps and flows. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 143-164. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/