Schwartzian derivative for multidimensional maps and flows
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 143-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of Schwartzian derivative to maps and flows in the space $\mathbb R^n$ and in infinite-dimensional spaces is introduced. It is used to study the type of stability loss (soft or hard) for fixed points and periodic trajectories of diffeo-morphisms and flows. In particular, an example of a partial differential equation of reaction-diffusion type is presented for which the conditions of soft loss of stability of a spatially homogeneous solution are verified.
@article{SM_1999_190_1_a4,
     author = {E. A. Sataev},
     title = {Schwartzian derivative for multidimensional maps and flows},
     journal = {Sbornik. Mathematics},
     pages = {143--164},
     year = {1999},
     volume = {190},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/}
}
TY  - JOUR
AU  - E. A. Sataev
TI  - Schwartzian derivative for multidimensional maps and flows
JO  - Sbornik. Mathematics
PY  - 1999
SP  - 143
EP  - 164
VL  - 190
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/
LA  - en
ID  - SM_1999_190_1_a4
ER  - 
%0 Journal Article
%A E. A. Sataev
%T Schwartzian derivative for multidimensional maps and flows
%J Sbornik. Mathematics
%D 1999
%P 143-164
%V 190
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/
%G en
%F SM_1999_190_1_a4
E. A. Sataev. Schwartzian derivative for multidimensional maps and flows. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 143-164. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/

[1] Singer D., “Stable orbits and bifurcations of maps on the interval”, SIAM J. Appl. Math., 35 (1978), 260–268 | DOI | MR

[2] Guckenheimer J., “Sensitive dependence to initial conditions for one-dimensional maps”, Comm. Math. Phys., 70 (1979), 165–178 | DOI | MR

[3] de Melo W., van Strien S., One Dimensional Dynamics, Springer-Verlag, Berlin, 1993 | MR | Zbl

[4] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamich. sistemy – 5, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 5, VINITI, M., 1986, 5–218 | MR

[5] Sataev E. A., “Proizvodnaya Shvartsa dlya diffeomorfizmov i potokov v $\mathbb R^n$”, UMN, 42:2 (1987), 241–242 | MR | Zbl

[6] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Fizmatgiz, M., 1967 | MR

[7] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[8] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl