Schwartzian derivative for multidimensional maps and flows
Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 143-164
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization of Schwartzian derivative to maps and flows in the space $\mathbb R^n$ and in infinite-dimensional spaces is introduced. It is used to study the type of stability loss (soft or hard) for fixed points and periodic trajectories of diffeo-morphisms and flows. In particular, an example of a partial differential equation of reaction-diffusion type is presented for which the conditions of soft loss of stability of a spatially homogeneous solution are verified.
@article{SM_1999_190_1_a4,
author = {E. A. Sataev},
title = {Schwartzian derivative for multidimensional maps and flows},
journal = {Sbornik. Mathematics},
pages = {143--164},
publisher = {mathdoc},
volume = {190},
number = {1},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/}
}
E. A. Sataev. Schwartzian derivative for multidimensional maps and flows. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 143-164. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/