@article{SM_1999_190_1_a4,
author = {E. A. Sataev},
title = {Schwartzian derivative for multidimensional maps and flows},
journal = {Sbornik. Mathematics},
pages = {143--164},
year = {1999},
volume = {190},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/}
}
E. A. Sataev. Schwartzian derivative for multidimensional maps and flows. Sbornik. Mathematics, Tome 190 (1999) no. 1, pp. 143-164. http://geodesic.mathdoc.fr/item/SM_1999_190_1_a4/
[1] Singer D., “Stable orbits and bifurcations of maps on the interval”, SIAM J. Appl. Math., 35 (1978), 260–268 | DOI | MR
[2] Guckenheimer J., “Sensitive dependence to initial conditions for one-dimensional maps”, Comm. Math. Phys., 70 (1979), 165–178 | DOI | MR
[3] de Melo W., van Strien S., One Dimensional Dynamics, Springer-Verlag, Berlin, 1993 | MR | Zbl
[4] Arnold V. I., Afraimovich V. S., Ilyashenko Yu. S., Shilnikov L. P., “Teoriya bifurkatsii”, Dinamich. sistemy – 5, Itogi nauki i tekhniki. Sovr. problemy matem. Fundament. napravleniya, 5, VINITI, M., 1986, 5–218 | MR
[5] Sataev E. A., “Proizvodnaya Shvartsa dlya diffeomorfizmov i potokov v $\mathbb R^n$”, UMN, 42:2 (1987), 241–242 | MR | Zbl
[6] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Fizmatgiz, M., 1967 | MR
[7] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR
[8] Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl